С? ! в спортзале 25 мячей, баскетбольных ,волейбольных и футбольных. футбольных мячей на 6 больше, чем баскетбольных , а волейбольных и футбольных вместе 18. сколько мячей каждого вида в спортзале?
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку
Запишем систему в виде расширенной матрицы:
3 2 3
4 1 1
2 3 -4
4
4
-5
Умножим 1-ю строку на (4). Умножим 2-ю строку на (-3). Добавим 2-ю строку к 1-й:
0 5 9
4 1 1
2 3 -4
4
4
-5
Умножим 3-ю строку на (-2). Добавим 3-ю строку к 2-й:
0 5 9
0 -5 9
2 3 -4
4
14
-5
Добавим 2-ю строку к 1-й:
0 0 18
0 -5 9
2 3 -4
18
14
-5
Теперь исходную систему можно записать так:
x3 = 18/18
x2 = [14 - (9x3)]/(-5)
x1 = [-5 - (3x2 - 4x3)]/2
Из 1-й строки выражаем x3
х3=18/18=1
Из 2-й строки выражаем x2
х2= (14-9*1) / -5= -1
Из 3-й строки выражаем x1
х1=2/2=1
Пошаговое объяснение: