Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
пошаговое объяснение:
допустим, снчала было 4 пачек зелёного, 5 – чёрного и 8 – фруктового.
60% – это 60%/100% = 3/5
60% от 8 – это 3/5 от 8, но 8 не делится на 5, и получится нецелое число пачек.
увеличим тогда предполагаемое начальное число всех пачек в 5 раз (это наименьшее увеличение, которое избавится от нецелости чисшла пачек)
допустим теперь, что снчала было 20 пачек зелёного, 25 – чёрного и 40 – фруктового.
тогда фруктового увеличилось на 24 пачки, и стало, значит, 64 пачки.
но новое число пачек фруктового чая должно делиться на 12, а 64 – не делится.
оно бы делилось, если бы было всего втрое больше.
увеличим тогда предполагаемое начальное число всех пачек ещё втрое (это наименьшее увеличение, которое избавится от нецелости чисшла пачек)
допустим снова, что снчала было 60 пачек зелёного, 75 – чёрного и 120 – фруктового.
тогда фруктового увеличилось на 72 пачки, и стало, значит, 192 пачки.
из пропорции последних количеств пачек чая получается, что зелёного стало 192: 12*5=16*5=80
а было 60, т.е. увеличилось на 20, как и должно было быть.
значит, вначале и было: 60 пачек зелёного, 75 – чёрного и 120 – фруктового чая.
всего: 255
подробнее - на -
Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
пошаговое объяснение:
допустим, снчала было 4 пачек зелёного, 5 – чёрного и 8 – фруктового.
60% – это 60%/100% = 3/5
60% от 8 – это 3/5 от 8, но 8 не делится на 5, и получится нецелое число пачек.
увеличим тогда предполагаемое начальное число всех пачек в 5 раз (это наименьшее увеличение, которое избавится от нецелости чисшла пачек)
допустим теперь, что снчала было 20 пачек зелёного, 25 – чёрного и 40 – фруктового.
тогда фруктового увеличилось на 24 пачки, и стало, значит, 64 пачки.
но новое число пачек фруктового чая должно делиться на 12, а 64 – не делится.
оно бы делилось, если бы было всего втрое больше.
увеличим тогда предполагаемое начальное число всех пачек ещё втрое (это наименьшее увеличение, которое избавится от нецелости чисшла пачек)
допустим снова, что снчала было 60 пачек зелёного, 75 – чёрного и 120 – фруктового.
тогда фруктового увеличилось на 72 пачки, и стало, значит, 192 пачки.
из пропорции последних количеств пачек чая получается, что зелёного стало 192: 12*5=16*5=80
а было 60, т.е. увеличилось на 20, как и должно было быть.
значит, вначале и было: 60 пачек зелёного, 75 – чёрного и 120 – фруктового чая.
всего: 255
подробнее - на -