в первой книге 255 страниц, во второй книге 204 страницы, а третьей книге 51 страница
Пошаговое объяснение:
Обозначим через х число страниц в первой книге.
В условии задачи сказано, что число страниц во второй книге составляет 80% числа страниц первой книге, следовательно, во второй книге (80/100)х = (8/10)х = 0.8х страниц.
Также известно, что число страниц в третьей книге составляет 25% числа во второй, следовательно, в третьей книге (25/100) * 0.8х = (1/4) * 0.8х = 0.2х страниц.
По условию задачи, в среднем в каждой книге по 170 страниц, следовательно, можем составить следующее уравнение:
(х + 0.8х + 0.2х) / 3 = 170.
Решаем полученное уравнение:
2х/3 = 170;
2х = 170 * 3;
2х = 510;
х = 510 / 2;
х = 255.
Следовательно, во второй книге 0.8х = 0.8 * 255 = 204 страницы, а в третьей книге 0.2х = 0.2 * 255 = 51 страница.
в первой книге 255 страниц, во второй книге 204 страницы, а третьей книге 51 страница
Пошаговое объяснение:
Обозначим через х число страниц в первой книге.
В условии задачи сказано, что число страниц во второй книге составляет 80% числа страниц первой книге, следовательно, во второй книге (80/100)х = (8/10)х = 0.8х страниц.
Также известно, что число страниц в третьей книге составляет 25% числа во второй, следовательно, в третьей книге (25/100) * 0.8х = (1/4) * 0.8х = 0.2х страниц.
По условию задачи, в среднем в каждой книге по 170 страниц, следовательно, можем составить следующее уравнение:
(х + 0.8х + 0.2х) / 3 = 170.
Решаем полученное уравнение:
2х/3 = 170;
2х = 170 * 3;
2х = 510;
х = 510 / 2;
х = 255.
Следовательно, во второй книге 0.8х = 0.8 * 255 = 204 страницы, а в третьей книге 0.2х = 0.2 * 255 = 51 страница.
360-296=64(б) 360+64=424(к) 360+424+64=848(д) ответ:848 деревьев