Самал к -50 задуманному числу прибавили 5 33 затем и значение суммы отняла девять десятых после их значения разностей прибавила 4730 и получила единицу какое число она задумала
1)Если Нарисовать круг, начать отсчёт от А, то Б и В можно расположить с одной стороны (например начнём отсчёт вправо, почасовой стрелке) (тогда легко всё получается, 75-50 = 25 (км) (Г в этом случае расположена между А и Б слева,и ничему не противоречит)
2) Пусть от А вправо будет Б (75 км), а влево В (50 км). Где будет Г? Она не может быть к А ближе, чем В (потому что АГ=60), она не может быть между В и Б (т.к. в этом случае тоже не получится АГ=60, значит Г будет между А и Б. (нарисуйте, будет всё понятно)
Между Б и В 25 км.
Рассмотрим 2 случая:
1)Если Нарисовать круг, начать отсчёт от А, то Б и В можно расположить с одной стороны (например начнём отсчёт вправо, почасовой стрелке) (тогда легко всё получается, 75-50 = 25 (км) (Г в этом случае расположена между А и Б слева,и ничему не противоречит)
2) Пусть от А вправо будет Б (75 км), а влево В (50 км). Где будет Г? Она не может быть к А ближе, чем В (потому что АГ=60), она не может быть между В и Б (т.к. в этом случае тоже не получится АГ=60, значит Г будет между А и Б. (нарисуйте, будет всё понятно)
Зная, что ГА = 60, находим, что ГБ=15.
ВГ=40 (по условию), значит БВ=40-15=25 (км)
таким образом независимо от расположения БВ=25 км
1) Высота пирамиды равна Н = m*sin β.
2) Радиус описанной окружности равен проекции бокового ребра на основание: R = m*cos β.
3) Сторона a основания равна высоте h основания, делённой на косинус 30 градусов.
h = R*(3/2) = (m*cos β)*(3/2) = 3m*cosβ/2.
a = (3m*cosβ/2)/(√3/2) = √3m*cos β.
4) Площадь основания So = a²√3/4 = 3√3m²cos²β/4.
5) Радиус вписанной окружности равен половине радиуса описанной окружности: r = R/2 = m*cos β/2.
6) Апофема А (высота боковой грани) равна:
А = √(r² + H²) = √((m²*cos² β/4) + m²*sin² β) = (m/2)√(cos² β + 4sin² β).