1/5
Пошаговое объяснение:
Пусть знаменатель равен х, тогда числитель равен х-4.
Если к числителю прибавить 19, то получим выражение х-4+19=х+15, а знаменатель будет х+28.
Дробь (х+15)/(х+28)больше прежней на 1/5.
Составляем уравнение: (х-4)/х+1/5=(х+15)/(х+28).
Приведем все к общему знаменателю и перенесем в одну сторону, упростим.
(5х-20+х)/(5х)=(х+15)/(х+28);
(6х-20)(х+28)=5х(х+15)
6х^2-5х^2-20х+168х-75х-560=0
Получим уравненеие х^2+73х-560=0. Решим и получим х1=-80 (посторонний корень, т.к знаменатель не может быть отрицательным числом) и х2=7.
Эта дробь (7-4)/7=3/7.
проверка (3+19)/(7+28)-3/7=(22-15)/35=7/35=1/5
1)6 1/8-1,75=6 1/8-1 75/100=6 1/8-1 3/4=49/8-7/4=35/8
2)5 6/11-3 5/10=5 6/11-3 1/2=61/11-7/2=(122-77)/22=45/22
3)45/22*2 1/5=45/22*11/5=9/2=4 1/2
4)9-4 1/2=4 1/2
5)35/8:9/2=35/8*2/9=35/36
6)35/36*1 2/7=35/36*9/7=5/4=1 1/4
(3 5/6-1 2/15)*5/9+((1/20+0,24)*8 1/3-1 1/6)*2=4
1)3 5/6-1 2/15=23/6-17/15=(115-34)/30=81/30=2 7/10
2)2 7/10*5/9=27/10*5/9=3/2=1 1/2
3)1/20+0,24=1/20+24/100=5/100+24/100=29/100
4)29/100*8 1/3=29/100*25/3=29/12
5)29/12-1 1/6=29/12-7/6=15/12=1 1/4
6)5/4*2=10/4=2 1/2
7)1 1/2+2 1/2=4
1/5
Пошаговое объяснение:
Пусть знаменатель равен х, тогда числитель равен х-4.
Если к числителю прибавить 19, то получим выражение х-4+19=х+15, а знаменатель будет х+28.
Дробь (х+15)/(х+28)больше прежней на 1/5.
Составляем уравнение: (х-4)/х+1/5=(х+15)/(х+28).
Приведем все к общему знаменателю и перенесем в одну сторону, упростим.
(5х-20+х)/(5х)=(х+15)/(х+28);
(6х-20)(х+28)=5х(х+15)
6х^2-5х^2-20х+168х-75х-560=0
Получим уравненеие х^2+73х-560=0. Решим и получим х1=-80 (посторонний корень, т.к знаменатель не может быть отрицательным числом) и х2=7.
Эта дробь (7-4)/7=3/7.
проверка (3+19)/(7+28)-3/7=(22-15)/35=7/35=1/5