√(x-3)-2=0 или x-a=0 √(x-3)=2 или х=а х-3=4 или х=а х=7 или х=а
получается, что данное уравнение может иметь максимум два корня, один из которых 7, а второй "а". 1)Чтобы решение было единственным, нужно, чтобы два этих корня были равны, то есть а=7
2)также единственный корень может быть при учете ОДЗ:
произведение равно нулю, когда хотя бы один из множителей равен нулю и ПРИ ЭТОМ ОСТАЛЬНЫЕ МНОЖИТЕЛИ ИМЕЮТ СМЫСЛ.
ОДЗ: x≥3
второй корень: x=a, Если х будет меньше трёх ( соответственно а будет меньше трёх ), то этот корень не будет удовлетворять ОДЗ и останется только корень х=7
Значит, чтобы корень был единственным, нужно, чтобы а<3
нас интересует интервал а∈(0;9), значит а может равняться 1 и 2
x≥3
(√(x-3)-2)*(x-a)=0
√(x-3)-2=0 или x-a=0
√(x-3)=2 или х=а
х-3=4 или х=а
х=7 или х=а
получается, что данное уравнение может иметь максимум два корня, один из которых 7, а второй "а".
1)Чтобы решение было единственным, нужно, чтобы два этих корня были равны, то есть а=7
2)также единственный корень может быть при учете ОДЗ:
произведение равно нулю, когда хотя бы один из множителей равен нулю и ПРИ ЭТОМ ОСТАЛЬНЫЕ МНОЖИТЕЛИ ИМЕЮТ СМЫСЛ.
ОДЗ:
x≥3
второй корень: x=a,
Если х будет меньше трёх ( соответственно а будет меньше трёх ), то этот корень не будет удовлетворять ОДЗ и останется только корень х=7
Значит, чтобы корень был единственным, нужно, чтобы а<3
нас интересует интервал а∈(0;9), значит а может равняться 1 и 2
1+2+7=10
отв: 10
ответ:1)43x<=43
x<=1
наименьшее натуральное число,являющееся решением неравенства это число 1
2)2/3х<35
x<35*3/2
x<52 1/2
число 52
3)0,6a-1,2-0,2>=0,8a+1,6+3,5
0,6a-0,8a>=1,4+5,1
-0,2a>= 6,5
a<= -32 1/2
4)60-17х>-19
-17х>-19-60
-17х>-79
х>-79÷(-17)
х>4,65
наименьшее натуральное число будет 5
5
19 - 6x < -5
6x>24
x>24/6
x>4 => наименьшее натуральное число:5 6)-7-30х<5х
-30х-5х<7
-35х<7
х<7÷(-35)
х<-0,2
наименьшего натурального числа нет, так как натуральные числа начинаются с 1