Саяхатшылар 4 байдаркаға 10 адамнан отырып, өзғн бойымен төмен түсті. Оларға тағы 9 адам қосылды да жағаға қайықпен жүзді. Сонда жеті орындық неше қайық қажет?
Обозначим сумму возрастов 11-ти основных игроков за x, сумму возрастов всех 16-ти игроков за y+56, сумму возрастов пяти запасных игроков за z.
а) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 = дробь, числитель — x, знаменатель — 11 . Перепишем его по-другому: 11(y плюс 56)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y+56 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k плюс 4. Получается, что x=11k плюс 44, y=16k плюс 8. Пусть k=21, тогда x=275, y=344. Тогда игроки основного состава могут иметь такой возраст: 20,21,22,23,24,25,26,27,28,29,30 лет. Запасные тогда могут иметь возраст: 16,17,18,34,40 лет. Средний возраст и основного состава и всей команды равен 25 лет. б) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 =5. Перепишем его по-другому: 11(y минус 24)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y-24 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k минус 1. Получается, что x=11k минус 11, y=16k плюс 8. Пусть k=22, тогда x=231, y=360. Тогда игроки основного состава могут иметь такой возраст: 16,17,18,19,20,21,22,23,24,25,26 лет. Запасные тогда могут иметь возраст: 31,37,38,39,40 лет. Средний возраст основного состава равен 21 году, средний возраст всей команды равен 26 лет. в) Запишем разность между средним возрастом всей команды и средним возрастом ее основного состава в виде: дробь, числитель — x плюс z, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 = дробь, числитель — 11z минус 5x, знаменатель — 11 умножить на 16 . Она будет наибольшей, если z максимально возможное, а x минимально возможное. Пусть запасные имеют возраст 36,37,38,39,40 лет, а возраст основного состава таков: 16,17,18,19,20,21,22,23,24,25,26. Тогда z=38 умножить на 5=190, x=21 умножить на 11=231. Искомая разность тогда равна 5,3125.
Обозначим сумму возрастов 11-ти основных игроков за x, сумму возрастов всех 16-ти игроков за y+56, сумму возрастов пяти запасных игроков за z.
а) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 = дробь, числитель — x, знаменатель — 11 . Перепишем его по-другому: 11(y плюс 56)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y+56 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k плюс 4. Получается, что x=11k плюс 44, y=16k плюс 8. Пусть k=21, тогда x=275, y=344. Тогда игроки основного состава могут иметь такой возраст: 20,21,22,23,24,25,26,27,28,29,30 лет. Запасные тогда могут иметь возраст: 16,17,18,34,40 лет. Средний возраст и основного состава и всей команды равен 25 лет. б) Получаем равенство: дробь, числитель — y плюс 56, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 =5. Перепишем его по-другому: 11(y минус 24)=16x. 11 и 16 взаимно просты, поэтому x должно делиться на 11, а y-24 должно делиться на 16. Значит, x=11n, y=16k+8, где n,k - натуральные числа. После упрощений получаем равенство: n=k минус 1. Получается, что x=11k минус 11, y=16k плюс 8. Пусть k=22, тогда x=231, y=360. Тогда игроки основного состава могут иметь такой возраст: 16,17,18,19,20,21,22,23,24,25,26 лет. Запасные тогда могут иметь возраст: 31,37,38,39,40 лет. Средний возраст основного состава равен 21 году, средний возраст всей команды равен 26 лет. в) Запишем разность между средним возрастом всей команды и средним возрастом ее основного состава в виде: дробь, числитель — x плюс z, знаменатель — 16 минус дробь, числитель — x, знаменатель — 11 = дробь, числитель — 11z минус 5x, знаменатель — 11 умножить на 16 . Она будет наибольшей, если z максимально возможное, а x минимально возможное. Пусть запасные имеют возраст 36,37,38,39,40 лет, а возраст основного состава таков: 16,17,18,19,20,21,22,23,24,25,26. Тогда z=38 умножить на 5=190, x=21 умножить на 11=231. Искомая разность тогда равна 5,3125.
ответ: а) да; б) да; в) 5,3125.
Пошаговое объяснение:
нам нужно найти число > 60, на которое без остатка поделится количество каждого сорта овощей
для начала разложим числа 132 и 330 на простые множители, выберем одинаковые и перемножим их - таким образом найдем НОД(132;330)
132 = 2 * 2 * 3 * 11
330 = 2 * 3 * 5 * 11
НОД(132; 330) = 2*3*11 = 66 - вот это количество порций салата
а другие делители нам не подходят, потому что их произведение будет < 60 (2*3 = 64; 2*11 = 22; 3*11 = 33)
это значит, что каждый сорт овощей поделится на 66 порций салата без остатка.
и тогда мы можем подсчитать количество овощей каждого сорта в порции салата
огурцы: 132/ 66 = 2
помидоры: 330 /66 = 5
ответ
овощей привезли на 66 порций