отложим одну монету, а на каждую чашу весов положим по две монеты. возможны два случая.
1) весы в равновесии. так как четырёх настоящих монет нет, то на одной чаше лежат обе фальшивые монеты. следующим взвешиванием достаточно сравнить веса монет с одной чаши: если весы в равновесии, то эти монеты настоящие, и фальшивые монеты в другой чаше; если весы не в равновесии, то фальшивые монеты – на весах.
2) одна из чаш перевесила. тогда на весах находится или только лёгкая фальшивая монета в более лёгкой чаше или только тяжёлая фальшивая монета в более тяжёлой чаше, или обе монеты находятся в разных чашах. вторым взвешиванием сравним веса монет в лёгкой чаше: если весы не в равновесии, то более лёгкая монета – фальшивая. если весы в равновесии, то отложенная монета – фальшивая (и она лёгкая). аналогично, третьим взвешиванием сравним веса монет из тяжёлой чаши: тогда, либо более тяжёлая монета – фальшивая, либо, если весы в равновесии, отложенная монета фальшивая (и она тяжёлая).
решение 2
первый раз положим на чаши весов первую и вторую монеты, а второй раз – третью и четвёртую. возможны только два случая.
1) один раз весы были в равновесии (пусть при первом взвешивании; при этом на чашах настоящие монеты), а другой раз – нет.
возьмем настоящую монету из первого взвешивания и сравним её с той, что оставалась на столе. если их веса равны, то последняя монета настоящая, а фальшивые – те, что участвовали во втором взвешивании. иначе, монета со стола – фальшивая, и мы знаем, легче она настоящей или тяжелее, а потому знаем, лёгкая или тяжёлая фальшивая монета участвовала во втором взвешивании.
2) оба раза весы были не в равновесии. тогда на весах каждый раз была одна фальшивая монета, а на столе осталась настоящая. взвесим её с лёгкой монетой из первого взвешивания. если веса равны, то в первом взвешивании фальшивой была более тяжёлая, а во втором – более лёгкая. если же более лёгкая монета из первого взвешивания оказалась легче, то она фальшивая, а из второго взвешивания фальшивая – более тяжёлая.
замечания
отметим, что решение 2 не использует то, что обе фальшивых монеты весят столько же, сколько две настоящих.
Дано:
EO = ON
∠E = ∠N
—————
Доказать △EOF = △MON
Решение
EO = ON по условию
∠E = ∠N по условию
∠EOF = ∠MON как вертикальные
Следовательно, △EOF = △MON по стороне и двум прилежащим углам.
5)
QM = MP
∠KQM = ∠MPF
————————
Доказать △KQM = △MPF
Решение
QM = MP по условию
∠KQM = ∠MPF по условию
∠E = ∠N
∠QMK = ∠FMP как вертикальные
Следовательно, △KQM = △MPF по стороне и двум прилежащим углам.
9)
Дано:
∠ROP = ∠SOP
∠RPO = ∠SPO
—————
Доказать △ROP = △SOP
Решение
∠ROP = ∠SOP по условию
∠RPO = ∠SPO по условию
OP - общая сторона
Следовательно, △ROP = △SOP по стороне и двум прилежащим углам
ответ:
отложим одну монету, а на каждую чашу весов положим по две монеты. возможны два случая.
1) весы в равновесии. так как четырёх настоящих монет нет, то на одной чаше лежат обе фальшивые монеты. следующим взвешиванием достаточно сравнить веса монет с одной чаши: если весы в равновесии, то эти монеты настоящие, и фальшивые монеты в другой чаше; если весы не в равновесии, то фальшивые монеты – на весах.
2) одна из чаш перевесила. тогда на весах находится или только лёгкая фальшивая монета в более лёгкой чаше или только тяжёлая фальшивая монета в более тяжёлой чаше, или обе монеты находятся в разных чашах. вторым взвешиванием сравним веса монет в лёгкой чаше: если весы не в равновесии, то более лёгкая монета – фальшивая. если весы в равновесии, то отложенная монета – фальшивая (и она лёгкая). аналогично, третьим взвешиванием сравним веса монет из тяжёлой чаши: тогда, либо более тяжёлая монета – фальшивая, либо, если весы в равновесии, отложенная монета фальшивая (и она тяжёлая).
решение 2
первый раз положим на чаши весов первую и вторую монеты, а второй раз – третью и четвёртую. возможны только два случая.
1) один раз весы были в равновесии (пусть при первом взвешивании; при этом на чашах настоящие монеты), а другой раз – нет.
возьмем настоящую монету из первого взвешивания и сравним её с той, что оставалась на столе. если их веса равны, то последняя монета настоящая, а фальшивые – те, что участвовали во втором взвешивании. иначе, монета со стола – фальшивая, и мы знаем, легче она настоящей или тяжелее, а потому знаем, лёгкая или тяжёлая фальшивая монета участвовала во втором взвешивании.
2) оба раза весы были не в равновесии. тогда на весах каждый раз была одна фальшивая монета, а на столе осталась настоящая. взвесим её с лёгкой монетой из первого взвешивания. если веса равны, то в первом взвешивании фальшивой была более тяжёлая, а во втором – более лёгкая. если же более лёгкая монета из первого взвешивания оказалась легче, то она фальшивая, а из второго взвешивания фальшивая – более тяжёлая.
замечания
отметим, что решение 2 не использует то, что обе фальшивых монеты весят столько же, сколько две настоящих.