Пошаговое Сначала нужно вынести за скобки общий знаменатель, который есть у каждого произведения. После этого найти значение в скобках. Для этого необходимо правильную дробь перевести в неправильную и избавиться от целой части дроби, полученный результат умножить на значение за скобками, предварительно сократив числитель и знаменатель дроби.
Площадь треугольника S=а•Н/2, где а - длина основания, а Н - высота. S треугольника МАВ = АВ• Н В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав): Нвсм + Нмда = Нмав Но Sвсм = ВС• Нвсм Sмда = АВ• Нмда
Пошаговое Сначала нужно вынести за скобки общий знаменатель, который есть у каждого произведения. После этого найти значение в скобках. Для этого необходимо правильную дробь перевести в неправильную и избавиться от целой части дроби, полученный результат умножить на значение за скобками, предварительно сократив числитель и знаменатель дроби.
3/4 * 1 1/15 + 1 1/15 * 2 1/2 - 1 3/8 * 1/15 = 1 1/15 * (3/4 + 2 1/2 - 1 3/8) = 1 1/15 * (3/4 + 5/2 - 11/8) = 1 1/15 * (3 * 6 + 5 * 12 - 11 * 3)/24 = 1 1/15 * (18 + 60 - 33)/24 = 1 1/15 * 45/24 = 16/15 * 15/8 = 2 .
ответ: 2.объяснение:
S треугольника МАВ = АВ• Н
В треугольниках ВСМ и МДА основания ВС и АД равны. Если мы проведем через точку М линию, параллельную ВС и АД, то увидим, что кратчайшие расстояния от точки М до оснований ВС и АД, то есть высоты треугольников ВСМ (Нвсм) и МДА (Нмда) в сумме равны высоте треугольника МАВ (Нмав):
Нвсм + Нмда = Нмав
Но
Sвсм = ВС• Нвсм
Sмда = АВ• Нмда
Sвсм + Sмда = ВС• Нвсм + АВ• Нмда
Так как АВ = ВС, то
Sвсм + Sмда =АВ• Нвсм + АВ• Нмда
Sвсм + Sмда = АВ• (Нвсм + Нмда)
Sвсм + Sмда = АВ• Нмав
То есть площадь треугольника МАВ равна сумме площадей треугольников ВСМ и МДА.
Следовательно,
19•2=38 - площадь параллелограмма АВСД.
ответ: 38