В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.
Пояснение:
Есть три рубашки - рубашка№1, рубашка№2, рубашка№3.
Так как у Дмитрия Григорьевича одна пара туфель и одни брюки, то и туфли, и брюки входят в каждый возможный комплект одежды.
Теперь отметим каждый комплект отдельно:
Комплект одежды №1 - туфли, брюки, обычный галстук, рубашка№1
Комплект одежды №2 - туфли, брюки, обычный галстук, рубашка№2
Комплект одежды №3 - туфли, брюки, обычный галстук, рубашка№3
Комплект одежды №4 - туфли, брюки, галстук бабочка, рубашка№1
Комплект одежды №5 - туфли, брюки, галстук бабочка, рубашка№2
Комплект одежды №6 - туфли, брюки, галстук бабочка, рубашка№3
Пошаговое объяснение:
Точка на комплексной плоскости изображает число
- действительная часть числа (Real)
- мнимая часть числа (Imaginary)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.