Число 34953495 разложим на множители таким образом, чтобы остаток от разложения состоял из чисел 22, 33, 44 и 55 (т.к. только такие оценки ставит учитель). 3495=3⋅5⋅2333495=3⋅5⋅233, при этом оценки 233233 не бывает, но оно записано в виде ряда оценок 22, 33 и 33. Таким образом, получается ряд оценок 33, 55, 22, 33 и 33 (как и по условию у нас оценок получилось 55 штук). Найдем среднее арифметическое данных оценок 3+5+2+3+35=3,23+5+2+3+35=3,2, округлив до целого получим оценку 3. ответ: 3. надеюсь
Таким образом, получается ряд оценок 33, 55, 22, 33 и 33 (как и по условию у нас оценок получилось 55 штук). Найдем среднее арифметическое данных оценок 3+5+2+3+35=3,23+5+2+3+35=3,2, округлив до целого получим оценку 3.
ответ: 3. надеюсь
а={3;-1;1} и b={0;2;1}, пусть перпендикулярный вектор с={x,y,z}
Тогда скалярное произведение ac=0, bc=0, то есть
3x- y+z =0
2y+z =0
x^2+y^2+z^2=1 (так как с - единичный вектор).
Решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
Подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 ),-2/(корень из 6))
и (-1/(корень из 6),-1/(корень из 6 ),2/(корень из 6))