Диаграмма состоит из различных элементов. Некоторые из них отображаются по умолчанию, другие можно добавлять по мере необходимости. Можно изменить вид элементов диаграммы, переместив их в другое место или изменив их размер либо формат. Также можно удалить элементы диаграммы, которые не требуется отображать. 1. область диаграммы.
2. область построения диаграммы.
3. точки данных для ряд данных, отмеченные на диаграмме.
4. ось категорий (горизонтальная) и значений (вертикальная), вдоль которых строится диаграмма.
5. легенда диаграммы.
6. Названия диаграммы и осей, которые можно использовать в диаграмме.
7. подпись данных, с которых можно обозначать сведения точки данных в ряду данных.
1. область диаграммы.
2. область построения диаграммы.
3. точки данных для ряд данных, отмеченные на диаграмме.
4. ось категорий (горизонтальная) и значений (вертикальная), вдоль которых строится диаграмма.
5. легенда диаграммы.
6. Названия диаграммы и осей, которые можно использовать в диаграмме.
7. подпись данных, с которых можно обозначать сведения точки данных в ряду данных.
2186 см2
Пошаговое объяснение:
AB=CD — боковые стороны;
AD= 26 см;
BC= 10 см;
O∈AD .
1. Центр окружности, описанной около равнобедренной трапеции, который находится на большем основании, делит его на две равные части:
AO=OD=R=12×AD=12×26=13 см.
2. В равнобедренной трапеции AE и FD можно найти, зная основания:
AE=FD=AD−BC2=26−102=162=8 см.
Вычисляем EO и OF :
EO=OF=R−AE=13−8=5 см.
3. Так как ΔEBO — прямоугольный, то высоту трапеции BE можно найти по теореме Пифагора:
BE=R2−EO2−−−−−−−−√=132−52−−−−−−−√=169−25−−−−−−−√=144−−−√=12 см.
4. Вычисляем площадь трапеции:
S=AD+BC2×BE=26+102×12=18×12=216 см2 .