тригонометрический круг — это самый простой способ начать осваивать тригонометрию. он легко запоминается, и на нём есть всё необходимое.тригонометрический круг заменяет десяток таблиц.
вот что мы видим на этом рисунке: перевод градусов в радианы и наоборот. полный круг содержит градусов, или радиан.значения синусов и косинусов основных углов. помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .и синус, и косинус принимают значения от до .значение тангенса угла тоже легко найти — поделив на . а чтобы найти котангенс — наоборот, косинус делим на синус.знаки синуса, косинуса, тангенса и котангенса.синус — функция нечётная, косинус — чётная.тригонометрический круг увидеть, что синус и косинус — функции периодические. период равен.
100 - а = 13
100 - уменьшаемое, а - вычитаемое, 13 - разность. Чтобы найти вычитаемое, надо из уменьшаемого вычесть разность.
а = 100 - 13 = 87
Проверка: 100 - 87 = 13.
а - 55 = 26
а - уменьшаемое, 55 - вычитаемое, 26 - разность. Чтобы найти уменьшаемое, надо к разности прибавить вычитаемое.
а = 26 + 55 = 81
Проверка: 81 - 55 = 26.
72 : b = 9
72 - делимое, b - делитель, 9 - частное. Чтобы найти делитель, надо делимое разделить на частное.
b = 72 : 9 = 8
Проверка: 72 : 8 = 9.
b : 4 = 7
b - делимое, 4 - делитель, 7 - частное. Чтобы найти делимое, надо частное умножить на делитель.
b = 7 * 4 = 28
Проверка: 28 : 4 = 7.
тригонометрический круг — это самый простой способ начать осваивать тригонометрию. он легко запоминается, и на нём есть всё необходимое.тригонометрический круг заменяет десяток таблиц.