Прыжок состоит из четырёх фаз: разбега, отталкивания, полёта и приземления. Наибольшие различия, с точки зрения техники, затрагивают полётную фазу прыжка.
«В шаге» (англ. The Stride jump; Sail jump) — простейшая техника, известная ещё с XIX века и знакомая спортсменам-любителям с уроков физкультуры — это прыжок «в шаге» или «согнув ноги». После отталкивания толчковая нога через сторону присоединяется к маховой и плечи отводятся немного назад. Хотя это элементарный вариант прыжка, но им пользуются атлеты высокого уровня и в XXI веке. Так, английский легкоатлет Кристофер Томлинсон, который имеет в активе прыжок на 8,35 м (рекорд Великобритании), прыгает «в шаге». Этим же стилемГалина Чистякова установила мировой рекорд 7,52 м[2][3].«Прогнувшись» (англ. The Hang Style) — более сложный вариант, требующий большей тренированности и координации. Прыгун в полёте прогибает тело в пояснице и как бы делает паузу перед приземлением. В 1920 году эту технику впервые продемонстрировал финский прыгун Туулос. На современном этапе развития лёгкой атлетики это наиболее популярная техника у прыгунов-женщин. Этим стилем например прыгала Хайке Дрекслер[4].«Ножницы» (англ. The Hitch-Kick) — наиболее сложный вариант, требующий высоких скоростно-силовых качеств спортсмена. Спортсмен в полете словно продолжает бег и делает 1,5, 2,5 или 3,5 шага ногами по воздуху. Это наиболее популярная техника у спортсменов мужчин высокого класса[5][6]. Стилем «ножницы» прыгал как Майк Пауэлл в 1991 году, так и Боб Бимон в 1968 году[7]. Игорь Тер-Ованесян вспоминал впоследствии подробности этого прыжка:
Пусть FO - перпендикуляр к плоскости ромба. Проведем ОК⊥AB, OL⊥BC, OM⊥CD и ON⊥AD. Проведенные отрезки - проекции соответствующих наклонных на плоскость ромба, значит и наклонные перпендикулярны сторонам ромба по теореме о трех перпендикулярах. Т.е. FK = FL = FM = FN = 16 см - расстояния от точки F до сторон ромба.
Если равны наклонные, проведенные из одной точки, то равны и их проекции: OK = OL = OM = ON, значит О - центр окружности, вписанной в ромб, т.е. точка пересечения его диагоналей.
ΔAOD: ∠AOD = 90°, AO = 8 см, DO = 6 см по свойству диагоналей ромба. По теореме Пифагора AD = √(AO² + DO²) = √(64 + 36) = 10 см ON = AO·DO / AD = 6·8 / 10 = 4,8 см
Прыжок состоит из четырёх фаз: разбега, отталкивания, полёта и приземления. Наибольшие различия, с точки зрения техники, затрагивают полётную фазу прыжка.
«В шаге» (англ. The Stride jump; Sail jump) — простейшая техника, известная ещё с XIX века и знакомая спортсменам-любителям с уроков физкультуры — это прыжок «в шаге» или «согнув ноги». После отталкивания толчковая нога через сторону присоединяется к маховой и плечи отводятся немного назад. Хотя это элементарный вариант прыжка, но им пользуются атлеты высокого уровня и в XXI веке. Так, английский легкоатлет Кристофер Томлинсон, который имеет в активе прыжок на 8,35 м (рекорд Великобритании), прыгает «в шаге». Этим же стилемГалина Чистякова установила мировой рекорд 7,52 м[2][3].«Прогнувшись» (англ. The Hang Style) — более сложный вариант, требующий большей тренированности и координации. Прыгун в полёте прогибает тело в пояснице и как бы делает паузу перед приземлением. В 1920 году эту технику впервые продемонстрировал финский прыгун Туулос. На современном этапе развития лёгкой атлетики это наиболее популярная техника у прыгунов-женщин. Этим стилем например прыгала Хайке Дрекслер[4].«Ножницы» (англ. The Hitch-Kick) — наиболее сложный вариант, требующий высоких скоростно-силовых качеств спортсмена. Спортсмен в полете словно продолжает бег и делает 1,5, 2,5 или 3,5 шага ногами по воздуху. Это наиболее популярная техника у спортсменов мужчин высокого класса[5][6].Стилем «ножницы» прыгал как Майк Пауэлл в 1991 году, так и Боб Бимон в 1968 году[7].
Игорь Тер-Ованесян вспоминал впоследствии подробности этого прыжка:
Проведем ОК⊥AB, OL⊥BC, OM⊥CD и ON⊥AD.
Проведенные отрезки - проекции соответствующих наклонных на плоскость ромба, значит и наклонные перпендикулярны сторонам ромба по теореме о трех перпендикулярах.
Т.е. FK = FL = FM = FN = 16 см - расстояния от точки F до сторон ромба.
Если равны наклонные, проведенные из одной точки, то равны и их проекции:
OK = OL = OM = ON, значит О - центр окружности, вписанной в ромб, т.е. точка пересечения его диагоналей.
ΔAOD: ∠AOD = 90°, AO = 8 см, DO = 6 см по свойству диагоналей ромба.
По теореме Пифагора AD = √(AO² + DO²) = √(64 + 36) = 10 см
ON = AO·DO / AD = 6·8 / 10 = 4,8 см
ΔFON: ∠FON = 90°, по теореме Пифагора
FO = √(FN² - ON²) = √(256 - 576/25) = √(5824/25)
ΔFOD: по теореме Пифагора
FD = √(OD² + FO²) = √(36 + 5824/25) = √(6724/25) = 82/5 = 16,4 см
ΔAOF: по теореме Пифагора
FA = √(AO² + FO²) = √(64 + 5824/25) = √(7424/25) = 16√29/5 см
FB = FD = 16,4 см
FA = FC = 16√29 / 5 см так как треугольники FBD и FAC равнобедренные (FO в них высота и медиана)