Система трех линейных уравнений с тремя неизвестными задана расширенной матрицей. Решить систему уравнений по формулам Крамера, методом Гаусса и матричным методом полное решение и ответ
Баскетбол (от . basket — корзина, ball — мяч) – олимпийский вид спорта, спортивная командная игра с мячом, цель в которой — забросить мяч в корзину соперника большее число раз, чем это сделает команда соперника в установленное время. каждая команда состоит из 5 полевых игроков. возникновения и развития баскетбола. в 1891 году в соединенных штатах америки молодой преподаватель, уроженец канады, доктор джеймс нейсмит, пытаясь “оживить” уроки по гимнастики, прикрепил две корзины из-под фруктов к перилам и предложил забрасывать туда футбольные мячи. получившаяся игра лишь отдаленно напоминала современный баскетбол. ни о каком ведении даже речи не шло, игроки перекидывали мяч друг другу и затем пытались закинуть его в корзину. побеждала команда, забросившая большее количество мячей. через год нейсмит разработал первые правила игры в баскетбол. первые же матчи по этим правилам вызвали и первые их изменения. постепенно баскетбол из сша проник сначала на восток – японию, китай, филиппины, а потом в европу и южную америку. через 10 лет на олимпийских играх в сент-луисе американцы организовали показательный тур между нескольких городов. в 1946 году возникла баскетбольная ассоциация америки (бaa). первый матч под её эгидой состоялся 1 ноября того же года в торонто между toronto huskies и new york knickerbockers. в 1949 году, ассоциация объединилась с национальной баскетбольной лигой сша, в результате чего была образована национальная баскетбольная ассоциация (nba). в 1967 году, была создана американская баскетбольная ассоциация, которая долгое время пыталась составить конкуренцию nba, но спустя 9 лет объединилась с ней. на сегодняшний день nba является одной из наиболее влиятельных и известных профессиональных баскетбольных лиг в мире. в 1932 году основана международная федерация любительского баскетбола. в состав федерации вошли 8 стран: аргентина, греция, италия, латвия, португалия, румыния. швеция, чехословакия. исходя из названия, предполагалось, что организация будет возглавлять только любительский баскетбол, однако, в 1989 году, профессиональные баскетболисты получили допуск к международным соревнованиям, и слово «любительский» было изъято из наименования. самый первый международный матч состоялся в 1904 году, а в 1936 году баскетбол попал в программу летних олимпийских игр.
Как найти наименьший общий знаменатель Для сложения или вычитания дробей с разными знаменателями сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее общее кратное (НОК) двух или более знаменателей. Вот несколько различных методов для вычисления НОЗ и информация о том, как подставить НОЗ обратно в уравнение для решения задачи.
Реклама Править Метод 1 из 4: Перечисление кратных [1]
1 Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее. Пример: 1/2 + 1/3 + 1/5 Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д. Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д. Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.
2 Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя. После выявления общих кратных определите наименьший знаменатель. Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число. Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30 НОЗ = 30
3 Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель. Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5) Новое уравнение: 15/30 + 10/30 + 6/30
4 Решите. После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения. Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30 Реклама Править Метод 2 из 4: Использование наибольшего общего делителя[2]
1 Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя. Пример: 3/8 + 5/12 Делители 8: 1, 2, 4, 8 Делители 12: 1, 2, 3, 4, 6, 12 НОД: 4
5 Решите уравнение. НОЗ найден; просто найдите значение этой суммы. Пример: 9/24 + 10/24 = 19/24 Реклама Править Метод 3 из 4: Разложение каждого знаменателя на простые множители[3]
1 Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя. Пример: 1/4 + 1/5 + 1/12 Простые множители 4: 2 * 2 Простые множители 5: 5 Простые множители 12: 2 * 2 * 3
2 Подсчитайте число раз каждый простой множитель есть у каждого знаменателя. Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12 Есть нуль 3 для 4 и 5; одна 3 для 12 Есть нуль 5 для 4 и 12; отдна 5 для 5
3 Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя. Например: наибольшее число раз для множителя 2 - 2 раза; для 3 – 1 раз; для 5 – 1 раз.
4 Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз). Пример: 2, 2, 3, 5
5 Перемножьте эти числа. Результат произведения этих чисел равно НОЗ. Пример: 2 * 2 * 3 * 5 = 60 НОЗ = 60
Для сложения или вычитания дробей с разными знаменателями сначала необходимо найти их наименьший общий знаменатель (НОЗ). Таким числом будет наименьшее общее кратное (НОК) двух или более знаменателей. Вот несколько различных методов для вычисления НОЗ и информация о том, как подставить НОЗ обратно в уравнение для решения задачи.
Реклама
Править
Метод 1 из 4:
Перечисление кратных [1]
1
Перечислите кратные каждого знаменателя. Составьте список из нескольких кратных для каждого знаменателя в уравнении. Каждый список должен состоять из произведения знаменателя на 1, 2, 3, 4 и так далее.
Пример: 1/2 + 1/3 + 1/5
Кратные 2: 2 * 1 = 2; 2 * 2 = 4; 2 * 3 = 6; 2 * 4 = 8; 2 * 5 = 10; 2 * 6 = 12; 2 * 7 = 14; т.д.
Кратные 3: 3 * 1 = 3; 3 * 2 = 6; 3 *3 = 9; 3 * 4 = 12; 3 * 5 = 15; 3 * 6 = 18; 3 * 7 = 21; т.д.
Кратные 5: 5 * 1 = 5; 5 * 2 = 10; 5 * 3 = 15; 5 * 4 = 20; 5 * 5 = 25; 5 * 6 = 30; 5 * 7 = 35; т.д.
2
Определите наименьшее общее кратное. Просмотрите каждый список и отметьте любые кратные числа, которые являются общими для каждого оригинального знаменателя. После выявления общих кратных определите наименьший знаменатель.
Обратите внимание, что если не найден общий знаменатель, возможно, потребуется продолжить выписывать кратные до тех пор, пока не появится общее кратное число.
Пример: 2 * 15 = 30; 3 * 10 = 30; 5 * 6 = 30
НОЗ = 30
3
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 15 * (1/2); 10 * (1/3); 6 * (1/5)
Новое уравнение: 15/30 + 10/30 + 6/30
4
Решите. После нахождения НОЗ и изменения соответствующих дробей, просто вычислите значение этого сложения.
Пример: 15/30 + 10/30 + 6/30 = 31/30 = 1 1/30
Реклама
Править
Метод 2 из 4:
Использование наибольшего общего делителя[2]
1
Вычислите наибольший общий делитель (НОД) для каждого знаменателя. Найдите НОД через перечисление возможных делителей каждого знаменателя.
Пример: 3/8 + 5/12
Делители 8: 1, 2, 4, 8
Делители 12: 1, 2, 3, 4, 6, 12
НОД: 4
2
Перемножьте знаменатели между собой.
Пример: 8 * 12 = 96
3
Разделите полученное значение на НОД. Полученное число будет наименьшим общим знаменателем (НОЗ).
Пример: 96 / 4 = 24
4
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 24 / 8 = 3; 24 / 12 = 2
3 * (3/8) = 9/24; 2 * (5/12) = 10/24
9/24 + 10/24
5
Решите уравнение. НОЗ найден; просто найдите значение этой суммы.
Пример: 9/24 + 10/24 = 19/24
Реклама
Править
Метод 3 из 4:
Разложение каждого знаменателя на простые множители[3]
1
Разложите каждый знаменатель на простые множители. Напомним, что простые множители – числа, которые делятся только на 1 или самих себя.
Пример: 1/4 + 1/5 + 1/12
Простые множители 4: 2 * 2
Простые множители 5: 5
Простые множители 12: 2 * 2 * 3
2
Подсчитайте число раз каждый простой множитель есть у каждого знаменателя.
Пример: Есть две 2 для знаменателя 4; нуль 2 для 5; две 2 для 12
Есть нуль 3 для 4 и 5; одна 3 для 12
Есть нуль 5 для 4 и 12; отдна 5 для 5
3
Возьмите только наибольшее число раз (эти множители есть в любом знаменателе) для каждого простого множителя.
Например: наибольшее число раз для множителя 2 - 2 раза; для 3 – 1 раз; для 5 – 1 раз.
4
Запишите по порядку найденные в предыдущем шаге простые множители (с учетом наибольшего числа раз).
Пример: 2, 2, 3, 5
5
Перемножьте эти числа. Результат произведения этих чисел равно НОЗ.
Пример: 2 * 2 * 3 * 5 = 60
НОЗ = 60
6
Перепишите исходное уравнение. Числители будут равны произведению на число, равное частному от деления НОЗ на соответствующий знаменатель.
Пример: 60/4 = 15; 60/5 = 12; 60/12 = 5
15 * (1/4) = 15/60; 12 * (1/5) = 12/60; 5 * (1/12) = 5/60
15/60 + 12/60 + 5/60
7
Решите.
Пример: 15/60 + 12/60 + 5/60 = 32/60 = 8/15
Реклама
Править
Метод 4 из 4:
Работа со смешанными числами[4]
1
Преобразуйте каждое смешанное число в неправильную дробь. Для этого умножте...Дальше не помню ((( Чем смогла Найди нужный параграф и читай:)