Разложим на множители нок и нод и данное число и найдем общие и не общие множители. нок 360 = 2*2*2*3*3*5 нод 18 = 2*3*3 1 число 90 = 2*3*3*5 нод для числа 90 не включает в себя множителя 5, значит, он присущ толькочислу 90, и в искомом числе х его нет! добавив к нод оставшиеся (выделенные курсивом ) множители, мы получим х х = нод*2*2 = (2*3*3)*2*2 = 18 *4 = 72. ответ: первое число 72. нод (72; 90) = 18; 72: 18=4; 90: 18=5 (это действительно нод: числа делятся без остатка и частные не имеют общих множителей) нок (72; 90) = 360; 360: 72=5; 360: 90=4. (нок правильное! )
4^х+1 - 6^х ≥ 2 * 3^2х+2<br />2^2(х+1) - 2^х *3^x≥ 2 * 3^2(х+1)<br />4*2^2х - 2^х *3^x≥ 18 * 3^2х<br />разделим все на 3^2х<br />4*(2/3)^2х - (2/3)^х ≥ 18<br />заменим y=(2/3)^х<br />4y²-y-18≥0<br />D=1+4*4*18=289<br />√D=17<br />y1=(1-17)/8=-2<br />у2=(1+17)/8=18/8=9/4<br />(у+2)(у-9/4)≥0 <br /> у принадлежит интервалу (-∞,-2]и[9/4;+∞) <br /> вспоминаем, что у должен быть >0 по определению, так как стереть положительного числа всегда положительна. <br /> Поэтому у принадлежит [9/4;+∞) <br /> (2/3)^х=9/4<br />(2/3)^х=(3/2)^2<br />(2/3)^х=(2/3)^(-2)<br /> ответ х принадлежит интервалу [-2;+∞) или иначе говоря х≥-2