Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
14.4 см
Пошаговое объяснение:
Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
Тоді, із прямокутного ΔCDO маємо:
OD²=CD²-OC² ⇒ OD²=51.84 - x²
Із прямокутного ΔEDO маємо:
OD²=ED²-OE² ⇒ OD²=4x² - x² ⇒ OD²=3x²
Отримуємо вираз:
51.84 - x² = 3x²
4x²=51.84
x=3.6
Тоді довжина діагоналі:
АС=4х=14.4 см
ответ:а) раскрываем скобки
1.8-0.3x-0.5+x >11
0.7x > 11-1.8+0.5
0.7x > 9.7
x > 13.85
ответ x=14 - целое и удовлетворяет условию
б)
0,8-3,2x+1+3x <26
-0.2x<26-0.8-1
-0.2x < 24.2
x> 24.2 / 0.2
x>121
ответ x=122 - наименьшее целое, удовлетворяющее неравенству
976
а) выражаем в первом неравенстве x>5/b^2
во втором неравенстве x>5/b^2, то же самое
=> b (-бесконечность; + бесконечность)
б) выражаем в первом неравенстве x<2/b^3
во втором неравенстве x>2/b^3, противоречие первому неравенству
область решения неравенства не существует, ответ: нет решения
в) выражаем в первом неравенстве bx>8+3x; bx-3x>8; x(b-3)>8; x> 8/(b-3)
во втором неравенстве x>8/(b-3), то же самое
=> b (-бесконечность; + бесконечность)
Пошаговое объяснение: