В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
staisywell1
staisywell1
25.02.2021 05:11 •  Математика

Сколькими можно раскрасить клетки прямоугольника 2*2019 в два цвета так чтобы никакие три клетки одного цвета не образовали уголок из трёх клеток ?

Показать ответ
Ответ:
kall5
kall5
03.10.2020 21:45

Пусть мы красим в белый и черные цвета. Заметим, что в любой правильной раскраске должно быть поровну обоих цветов. Иначе в каком-нибудь квадрате 2x2 найдется три клетки одного цвета, что невозможно. Теперь будем по порядку рассматривать квадраты 2x2. Пусть изначально прямоугольника покрашен в шахматную расцветку. Для того, чтобы получать новую раскраску будем двигать черные (без ограничения общности - двигая черные мы, грубо говоря, двигаем и белые) клетки (в квадратах, двигаясь слева направо), причем так, чтобы не возникало уголков. Действительно, если они будут возникать, то их придется устранять и тем самым создавать их в квадратах, расположенных правее и в конце концов упремся. Таким образом, для первого квадрата существует три движения (включая тождественную перестановку). Для второго квадрата существует два варианта - если мы двигали черную клетку, стоящую в пересечении первого и второго квадратов, то движений 2, если нет - то три. Итак, можно построить дерево (см. рис.). При переходе по стрелке мы умножаем числа, стоящие в вершинах. В конце концов, числа до которых нельзя добраться, складываем. Итог - кол-во Докажем по индукции, что искомое количество равно 3\times 5^{n-1}, где n - номер уровня (ступени).

База очевидна: при n=1 результат 3, что верно.

Переход: пусть для некоторого n=k верно. Докажем, что верно и для n=k+1. Рассмотрим k+1-ый уровень. Количество троек равно количеству двоек. Поэтому каждое слагаемое, входящее в сумму, которая равна 3\times 5^{k-1} можно умножить сначала  на тройки, а потом на двойки, что равнозначно 3\times 5^{k-1}\times (3+2)=3\times 5^{k}, переход доказан.

Не забудем итоговый ответ также домножить на два, так как существует две различные шахматные расцветки прямоугольника.

Имеем 2018 квадратов, а, стало быть, уровней. K=2\times(3\times 5^{2017})=6\times5^{2017};

ответ: 6\times5^{2017}


Сколькими можно раскрасить клетки прямоугольника 2*2019 в два цвета так чтобы никакие три клетки одн
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота