В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
innaalekseenko1
innaalekseenko1
09.11.2021 14:45 •  Математика

Сколько разных экзаменационных билетов можно сформировать, если билет состоит из двух теоретических и двух практических задач, при этом всего 40 теоретических и 20 практических заданий

Показать ответ
Ответ:
aantip
aantip
25.10.2022 11:55
Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции. Введение Править

Обозначим множество чисел X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (
x
¯
{\bar {x}}, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и
x
¯
{\bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда
x
¯
{\bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же

x
¯
=
1
n

i
=
1
n
x
i
=
1
n
(
x
1
+

+
x
n
)
.
{\bar {x}}={\frac {1}{n}}\sum _{{i=1}}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).
Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры Править
Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
x
1
+
x
2
+
x
3
3
.
{\frac {x_{1}+x_{2}+x_{3}}{3}}.
Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
x
1
+
x
2
+
x
3
+
x
4
4
.
{\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.
Непрерывная случайная величина Править
Если существует интеграл от некоторой функции
f
(
x
)
f(x) одной переменной, то среднее арифметическое этой функции на отрезке
[
a
;
b
]
[a;b] определяется через определённый интеграл:

f
(
x
)
¯
[
a
;
b
]
=
1
b

a

a
b
f
(
x
)
d
x
.
{\displaystyle {\overline {f(x)}}_{[a;b]}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx.}
Здесь подразумевается, что
b
>
a
.
{\displaystyle b>a.}

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины. Направления Править
Основная статья: Статистика направлений
При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно
1

+
359

2
=
{\frac {1^{\circ }+359^{\circ }}{2}}=180°. Это число неверно по двум причинам.

Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться:
1

+
(

1

)
2
=
0

{\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ },
1

+
719

2
=
360

{\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }.
Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значением, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
число 1° отклоняется от 0° всего на 1°;
число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.
Среднее значение для циклической переменной, рассчитанное .
0,0(0 оценок)
Ответ:
Killer0803
Killer0803
05.05.2022 10:49

Пошаговое объяснение:

а)

1). Какую часть пути теплоход за вторые сутки, если из условия задачи известно, что в первые сутки теплоход всего пути, а во вторые сутки – на 1/15 пути больше, чем в первые?

9/20 + 1/15 = 27/60 + 4/60 = 31/60 (пути).

2). Какую часть всего пути теплоход за эти двое суток?

9/20 + 31/60 = 27/60 + 31/60 = 58/60 = 29/30 (пути).

ответ: 29/30 всего пути теплоход за эти двое суток.

б) Так как между числами 5 и 7 расположено только одно число 6, то чтобы найти четыре дроби, каждая из которых больше 5/9 и меньше 7/9, необходимо заменить эти дроби по основному свойству дробей равными, но с большим знаменателем, например, 27. Тогда 5/9 = 15/27 и 7/9 = 21/27. Получаем: 5/9 < 16/27 < 7/9; 5/9 < 17/27 < 7/9; 5/9 < 18/27 < 7/9; 5/9 < 19/27 < 7/9

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота