В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
akmaralwellcom
akmaralwellcom
04.12.2020 18:38 •  Математика

Сколько всего диагоналей можно провести в 17-угольнике?

Показать ответ
Ответ:
Ggggggghhhj
Ggggggghhhj
04.10.2020 13:44
Формула выглядит так n * (n-3) / 2 = 17 * (17-3) / 2 = 119
0,0(0 оценок)
Ответ:
mrpetrov289
mrpetrov289
04.10.2020 13:44
Количество диагоналей в таком многоугольнике можно определить по формуле d=(n² - 3n):2 Объясню, откуда она взялась. Пусть n — число вершин многоугольника, вычислим d — число возможных разных диагоналей. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом, из одной вершины можно провести n − 3 диагонали; перемножим это на число вершин (n -3 ) n Но так как каждая диагональ посчитана дважды ( по разу для каждого конца), то получившееся число надо разделить на 2. d=(n² - 3n):2 По этой формуле нетрудно найти, что у треугольника — 0 диагоналей у прямоугольника — 2 диагонали у пятиугольника — 5 диагоналей у шестиугольника — 9 диагоналей и т.д. У 17-угольника d=(n² - 3n):2 =119 диагоналей.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота