Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
=
5⋅11
4⋅11
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5⋅12
4⋅12
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5⋅13
4⋅13
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5⋅14
4⋅14
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5⋅15
4⋅15
75
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.
I. Если два последних числа одинковые, то складываем их и получаем новое число.
II. Иначе, берём среде-арифметическое двух последних чисел, и если получается нецелое значение, отбрасываем дробную часть после запятой.
Вот что получится:
4, 3.
По (II) получаем : (4+3)/2 = 3.5 ==> 3
4, 3, 3,
По (I) получаем : 3+3 = 6
4, 3, 3, 6,
По (II) получаем : (3+6)/2 = 4.5 ==> 4
4, 3, 3, 6, 4,
По (II) получаем : (6+4)/2 = 5
4, 3, 3, 6, 4, 5,
По (II) получаем : (4+5)/2 = 4.5 ==> 4
Далее получится: 4, 3, 3, 6, 4, 5, 4, 4,8,6,7,6,6,12,9,10,9,9,18...
Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
5k
4k
=
5⋅11
4⋅11
=
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5k
4k
=
5⋅12
4⋅12
=
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5k
4k
=
5⋅13
4⋅13
=
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5k
4k
=
5⋅14
4⋅14
=
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5k
4k
=
5⋅15
4⋅15
=
75
60
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.