Скорость пешехода 5- км/ч. Какой путь он пройдет 1 за 3 часа? За з» часа? За 30 ден? 2 5км; 5 1/6км; 5 1/5км 16км; 2 2/3км; 3 1/5км 15 1/3км; 5 1/6км; 180 1/3км В Проверить
Треугольник, у которого все три стороны равны, называется равносторонним (или правильным) треугольником.
Обозначим сторону данного по условию треугольника как a. Так как периметр многоугольника равен сумме длин всех его сторон, то периметр равностороннего треугольника, данного по условию равен:
P = a + a + a = 33 * a.
Так как сумма сторон треугольника с тремя равными сторонами равна 99 см, то его периметр равен также 99 см. Таким образом:
33 * a = 99;
a = 99/33 (по пропорции);
a = 33 см.
ответ: сторона треугольника, у которого все три стороны равны, и сумма которых равна 99 см, равна 33 см.
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон: для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный ответ: 1) 2) треугольник тупоугольный
33
Пошаговое объяснение:
Треугольник, у которого все три стороны равны, называется равносторонним (или правильным) треугольником.
Обозначим сторону данного по условию треугольника как a. Так как периметр многоугольника равен сумме длин всех его сторон, то периметр равностороннего треугольника, данного по условию равен:
P = a + a + a = 33 * a.
Так как сумма сторон треугольника с тремя равными сторонами равна 99 см, то его периметр равен также 99 см. Таким образом:
33 * a = 99;
a = 99/33 (по пропорции);
a = 33 см.
ответ: сторона треугольника, у которого все три стороны равны, и сумма которых равна 99 см, равна 33 см.
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
ищем длины сторон:
для этого используем формулу
находим координаты точки C:
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1)
2) треугольник тупоугольный