На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Решение
Пронумеруем монеты слева направо. Так как среди монет есть обязательно настоящая и фальшивая, то первая монета настоящая, а четвертая– фальшивая. Необходимо определить вид второй и третьей монет. Настоящие монеты лежат левее фальшивых, значит возможны следующие случаи: 1)настоящая, настоящая, настоящая, фальшивая; 2)настоящая, настоящая, фальшивая, фальшивая; 3)настоящая, фальшивая, фальшивая, фальшивая.
Положим на левую чашу весов первую и четвертую монеты, а на правую чашу весов– вторую и третью монеты.
1) Если правая чаша перевесила, то на ней лежат только настоящие монеты, т.е. вторая и третья монеты– настоящие.
2) Если весы находятся в равновесии, то на каждой чаше лежат настоящая и фальшивая монеты, т.е. вторая монета– настоящая, а третья– фальшивая.
3) Если левая чаша перевесила, то на правой чаше лежат только фальшивые монеты, т.е. вторая и третья монеты– фальшивые.
Найдем производную функции: . приравняем первую производную к нулю и решим уравнение: . Откуда получаем или (х+65)=0. в первом случае решений нет, так как не существует такой степени, чтобы при возведении в нее числа (кроме нуля) получался ноль. Значит, x = - 65 - точка минимума, так как на интервале (-∞;-65) производная функции отрицательна, а сама функция убывает; а на интервале (-65; +∞) функция возрастает, т.к. производная на этом интервале положительная. вычислим значение функции в точке минимума: . P.S.: хотя по условию значение функции в этой точке и не нужно, но коли уж я напечатала. то мне жалко стирать свой труд)))
Условие
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Решение
Пронумеруем монеты слева направо. Так как среди монет есть обязательно настоящая и фальшивая, то первая монета настоящая, а четвертая– фальшивая. Необходимо определить вид второй и третьей монет. Настоящие монеты лежат левее фальшивых, значит возможны следующие случаи: 1)настоящая, настоящая, настоящая, фальшивая; 2)настоящая, настоящая, фальшивая, фальшивая; 3)настоящая, фальшивая, фальшивая, фальшивая.
Положим на левую чашу весов первую и четвертую монеты, а на правую чашу весов– вторую и третью монеты.
1) Если правая чаша перевесила, то на ней лежат только настоящие монеты, т.е. вторая и третья монеты– настоящие.
2) Если весы находятся в равновесии, то на каждой чаше лежат настоящая и фальшивая монеты, т.е. вторая монета– настоящая, а третья– фальшивая.
3) Если левая чаша перевесила, то на правой чаше лежат только фальшивые монеты, т.е. вторая и третья монеты– фальшивые.
Пошаговое объяснение:
.
приравняем первую производную к нулю и решим уравнение:
. Откуда получаем
или (х+65)=0.
в первом случае решений нет, так как не существует такой степени, чтобы при возведении в нее числа (кроме нуля) получался ноль.
Значит, x = - 65 - точка минимума, так как на интервале (-∞;-65) производная функции отрицательна, а сама функция убывает; а на интервале (-65; +∞) функция возрастает, т.к. производная на этом интервале положительная.
вычислим значение функции в точке минимума:
.
P.S.: хотя по условию значение функции в этой точке и не нужно, но коли уж я напечатала. то мне жалко стирать свой труд)))