Случайная величина Х задана функцией распределения Найти функцию плотности распределения f(x), вычислить математическое ожидание М(Х) и дисперсию D(X), найти вероятность попадания случайной величины в интервал
У Тани получилось 2 карточки. Пусть х, b- стороны первой разрезанной карточки, тогда (a-x), b стороны другой разрезанной карточки Тани. P₁=2x+2b P₂=2(a-x)+2b=2a-2x+2b P₁+P₂=44 P₁+P₂=2a-2x+2b+2x+2b=2a+4b=44
Рассмотрим новые карточки Вани Стороны первой новой разрезанной карточки Вани y и а, тогда стороны второй разрезанной карточки Вани (b-y) и a. P₁'=2y+2a P₂'=2(b-y)+2a=2b-2y+2a P₁'+P₂'=40 P₁'+P₂'=2y+2a+2b-2y+2a=4a+2b=40
Сложим все новые периметры Р₁+Р₂+Р₁'+P₂'=4a+2b+2a+4b=6a+6b=3(2a+2b)=40+44 3*P=84 P=84/3 P=28 - исходный периметр карточек
А) сначала нужно найти наименьшее общее кратное знаменателей: 4=2*2 11=11 НОК( 4 и 11)= 2*2*11=44 44- это наименьший общий знаменатель. Теперь делим этот знаменатель на бывшие знаменатели: 44:4=11 ; 44:11=4 . Что это за числа? Это дополнительные множители. Умножаем эти дополнительные множители на числители, которые им соответствуют: 11*3=33 ( дробь: 33/44) ; 7*4=28 (дробь: 28/44). б) находим НОК знаменателей: 15=3*5; 21=3*7 НОК( 15 и 21 ) = 3*5*7=105 Это и будет наименьшим общим знаменателем.Делим этот знаменатель на бывшие знаменатели: 105:15=7;105:21=5 . Как мы знаем, это дополнительные множители.Умножаем эти дополнительные множители на числители, которые им соответствуют: 7*2=14(дробь: 14/105) ; 5*3=15(дробь:15/105)
P=2a+2b - периметр исходной карточки
У Тани получилось 2 карточки.
Пусть х, b- стороны первой разрезанной карточки, тогда (a-x), b стороны другой разрезанной карточки Тани.
P₁=2x+2b
P₂=2(a-x)+2b=2a-2x+2b
P₁+P₂=44
P₁+P₂=2a-2x+2b+2x+2b=2a+4b=44
Рассмотрим новые карточки Вани
Стороны первой новой разрезанной карточки Вани y и а, тогда стороны второй разрезанной карточки Вани (b-y) и a.
P₁'=2y+2a
P₂'=2(b-y)+2a=2b-2y+2a
P₁'+P₂'=40
P₁'+P₂'=2y+2a+2b-2y+2a=4a+2b=40
Сложим все новые периметры
Р₁+Р₂+Р₁'+P₂'=4a+2b+2a+4b=6a+6b=3(2a+2b)=40+44
3*P=84
P=84/3
P=28 - исходный периметр карточек
ответ В)28