Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
(x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника:
a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂
(a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы:
∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44
Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор:
Методом треугольника находишь определитель матрицы:
∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор:
Методом треугольника находишь определитель матрицы:
∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор:
Методом треугольника находишь определитель матрицы:
∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы).
x =
y =
z =
Проверка обычной заменой:
НОД (12; 20) = 4
НОД (27; 72) = 3 * 3 = 9
Пошаговое объяснение:
Наибольший общий делитель (НОД) двух чисел - это наибольшее число, на которое оба числа делятся без остатка.
1. НОД (12; 20)
Разложим на простые множители число 12 :
12 = 2 * 2 * 3
Разложим на простые множители число 20 :
20 = 2 * 2 * 5
Выберем одинаковые простые множители в обоих числах: 2, 2
Находим произведение одинаковых простых множителей и записываем ответ :
НОД (12; 20) = 2 * 2 = 4
2. НОД (27; 72)
Разложим на простые множители число 27 :
27 = 3 * 3 * 3
Разложим на простые множители число 72 :
72 = 2 * 2 * 2 * 3 * 3
Выберем одинаковые простые множители в обоих числах: 3, 3
Находим произведение одинаковых простых множителей и записываем ответ :
НОД (27; 72) = 3 * 3 = 9