В двоичной системе счисления при записи числа используют всего две цифры: 0 и 1. Число «один» записывается, как обычно, 1, но число «два» составляет уже единицу второго разряда и поэтому записывается так: 10-2 «одна двойка и нуль единиц» (цифра 2, находящаяся внизу в конце записи числа, означает, что число записано в двоичной системе). Число «три» изображается: 11-2 «одна двойка и одна единица». Число «четыре» представляет собой единицу следующего, третьего разряда и поэтому записывается так: 100-2 «одна четверка, нуль двоек и нуль единиц». Таким образом, если в записи числа цифру 1 передвинуть влево на один разряд, то ее значение увеличивается вдвое (а не в десять раз, как в нашей десятичной системе). Сравните представление числа, запись которого состоит из четырех цифр 1, в виде суммы разрядных единиц в десятичной и двоичной системах: (тут все цифры, который через тире, вверху) 1111 = 1 • 1000 + 1 • 100 + 1 • 10 + 1 = 1 • 10-3 + 1 • 10-2 + 1 • 10 + 1; (а тут "1111-2" написано в двоичной системе исчисления) 1111-2 = 1 • 8 + 1• 4 + 1• 2 + 1 = 1• 2-3+1• 2-2 + 1• 2 + 1 = 15. Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так: 10-2; 100-2; 101-2; 110-2; 1110-2. Запишите в двоичной системе все натуральные числа от 1 до 15 включительно. Подумайте, почему двоичная система широко используется в вычислительной технике, но она неудобна в повседневной практике.
У=2х+4Построим таблицу значений. Графиком линейной функции прямая, то достаточно двух значений в таблицух -2 0у 0 4По таблице в системе координат построить точки, соединить их прямой. Это и есть график функции. ответ на вопросы можно получить по графику, а можно аналитическиа) 2х+4=0 2х=-4 х=-2значит точка пересечения графика функции с осью абсцисс имеет координаты (-2; 0) б)2х+4<0 2x<-4 x<-2Функция принимает отрицательные значения при хЄ(- бесконечность; -2)
Пошаговое объяснение:
В двоичной системе счисления при записи числа используют всего две цифры: 0 и 1. Число «один» записывается, как обычно, 1, но число «два» составляет уже единицу второго разряда и поэтому записывается так: 10-2 «одна двойка и нуль единиц» (цифра 2, находящаяся внизу в конце записи числа, означает, что число записано в двоичной системе). Число «три» изображается: 11-2 «одна двойка и одна единица». Число «четыре» представляет собой единицу следующего, третьего разряда и поэтому записывается так: 100-2 «одна четверка, нуль двоек и нуль единиц». Таким образом, если в записи числа цифру 1 передвинуть влево на один разряд, то ее значение увеличивается вдвое (а не в десять раз, как в нашей десятичной системе). Сравните представление числа, запись которого состоит из четырех цифр 1, в виде суммы разрядных единиц в десятичной и двоичной системах: (тут все цифры, который через тире, вверху) 1111 = 1 • 1000 + 1 • 100 + 1 • 10 + 1 = 1 • 10-3 + 1 • 10-2 + 1 • 10 + 1; (а тут "1111-2" написано в двоичной системе исчисления) 1111-2 = 1 • 8 + 1• 4 + 1• 2 + 1 = 1• 2-3+1• 2-2 + 1• 2 + 1 = 15. Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так: 10-2; 100-2; 101-2; 110-2; 1110-2. Запишите в двоичной системе все натуральные числа от 1 до 15 включительно. Подумайте, почему двоичная система широко используется в вычислительной технике, но она неудобна в повседневной практике.