В математике есть много подобных «доказательств». В том числе есть и «доказательство» того, что 2*2=5. Но все эти «доказательства» содержат в себе ошибки, но бывает, что их трудно сразу обнаружить. Ученые такими доказательствами не занимаются. Только шутники, которые неплохо знают математику.
То, что 2+2=5 есть много разных «доказательств». Приведу самое Представим равенство: 20-20=25-25. Выносем множители: 4(5-5)=5(5-5) и разделим на общий множитель (5-5). Получим 4=5. Следовательно, 2+2=5. Попробуйте найти здесь ошибку. А всё очень А в математике делить на ноль нельзя.
Ещё одно «доказательство». 2+2=5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Имем 1 = (5-5)/(5-5). Тогда получим 2 * (5-5)/(5-5) + 2 * (5-5)/(5-5) = 5 * (5-5)/(5-5). Умножим обе части уравнения на(5-5), тогда имеем 2*(5-5) + 2*(5-5) = 5*(5-5) Отсюда получим 0 + 0 = 0. Это доказательство похоже на предыдущее, но лихо закрученное. Здесь также нельзя делить на ноль.
А вот ещё более сложное «доказательство». Докажем что 2+2=5 и 2 * 2 = 5, тоже равно 5. То есть 4=5 . Запишем сначала очевидное равенство 25 - 45 = 16 - 36 . Прибавим (9/2)^2 к обеим частям 25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2. Или 5^2 - (2 * 5 * 9)/2 + (9/2)^2 = 4^2 - (2 * 4 * 9)/2 + (9/2)^2. Отсюда(5-9/2)^2 = (4-9/2)^2. Обе части положительны, можно извлечь квадратный корень. 5 - 9/2 = 4 - 9/2. Теперь прибавим 9/2 к обеим частям уравнения: 5 = 4 что и требовалось доказать. Итак, 2*2 = 5 и 2+2=5. Где здесь ошибка в доказательстве?
Пошаговое объяснение:
В математике есть много подобных «доказательств». В том числе есть и «доказательство» того, что 2*2=5. Но все эти «доказательства» содержат в себе ошибки, но бывает, что их трудно сразу обнаружить. Ученые такими доказательствами не занимаются. Только шутники, которые неплохо знают математику.
То, что 2+2=5 есть много разных «доказательств». Приведу самое Представим равенство: 20-20=25-25. Выносем множители: 4(5-5)=5(5-5) и разделим на общий множитель (5-5). Получим 4=5. Следовательно, 2+2=5. Попробуйте найти здесь ошибку. А всё очень А в математике делить на ноль нельзя.
Ещё одно «доказательство». 2+2=5. Преобразуем это равенство 2 * 1 + 2 * 1 = 5 * 1. Распишем 1 как частное равных чисел: Имем 1 = (5-5)/(5-5). Тогда получим 2 * (5-5)/(5-5) + 2 * (5-5)/(5-5) = 5 * (5-5)/(5-5). Умножим обе части уравнения на(5-5), тогда имеем 2*(5-5) + 2*(5-5) = 5*(5-5) Отсюда получим 0 + 0 = 0. Это доказательство похоже на предыдущее, но лихо закрученное. Здесь также нельзя делить на ноль.
А вот ещё более сложное «доказательство». Докажем что 2+2=5 и 2 * 2 = 5, тоже равно 5. То есть 4=5 . Запишем сначала очевидное равенство 25 - 45 = 16 - 36 . Прибавим (9/2)^2 к обеим частям 25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2. Или 5^2 - (2 * 5 * 9)/2 + (9/2)^2 = 4^2 - (2 * 4 * 9)/2 + (9/2)^2. Отсюда(5-9/2)^2 = (4-9/2)^2. Обе части положительны, можно извлечь квадратный корень. 5 - 9/2 = 4 - 9/2. Теперь прибавим 9/2 к обеим частям уравнения: 5 = 4 что и требовалось доказать. Итак, 2*2 = 5 и 2+2=5. Где здесь ошибка в доказательстве?
40 страниц в первый день, 48 страниц во второй день, 32 страницы в третий день.
Пошаговое объяснение:
1. Найдём, какая часть книги было прочитана в остальные два дня:
1 - 1/3 = 2/3 (книги)-было прочитано в оставшиеся два дня.
2. Найдём, какая часть книги было прочитана во второй день:
2/3*60%= (книги) - была прочитана во второй день.
3. Найдём, какая часть книги была прочитана в третий день:
1 - (1/3+2/5) = 1 - (11/15) = 4/15 (книги) - было прочитано в третий день.
4. Найдём, на какую часть книги в первый день было прочитано больше, чем в третий:
1/3 - 2/5 = 5/15 - 4/15 = 1/15 (книги) - больше.
5. Найдём, сколько страниц было прочитано во все три дня:
Так как в условии сказано, что в третий день было прочитано на 8 страниц меньше, значит всего было прочитано:
8:1/15=120 (страниц) - всего.
120* 1/3 = 40 (страниц) - в первый день.
120* 2/5= 48 (страниц) - во второй день.
120* 4/15= 32 (страницы) - в третий день.
ответ: 40 страниц в первый день, 48 страниц во второй день, 32 страницы в третий день.