1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
1) Так как призма правильня, то в основании лежит квадрат. АВСДА1В1С1Д1-данная призма. Из треугольника В1А1Д-прямоугольный, против угла в 30 градусов лежит кактет в 2 раза иеньше гиптенузы, следовательно сторона основания равна 2. Тогда, находим из треугольника ВСД по т. Пифагора ВД=корень из (4+4)=2корня из2
Из треугольника В1ВД находим ВВ1=корень из (16-8)=2корня из2
Тогда:
V=2*2*2корня из 2= 8корней из2
Радиус описанного около этой призмы цилиндра R=0.5BД=корень из2
Тогда его объем равен:
V=piR^2*BB1=4*pi*корень из2
По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Пошаговое объяснение: