a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Для начала допустим, что число п- это p, а число м- это m (будем обозначать более математически :) )
Если целое число имеет остаток q при делении на 5, то его можно представить в виде n = 5 * p + q, где n- само число, а p- целое число.
Сделаем тоже самое с числами из условия:
p = 5 * k + 3
m = 5 * r + 4
Теперь просто возведём каждое в квадрат и сложим 2 результата:
p ^ 2 + m ^ 2 = (5k + 3) ^ 2 + (5r + 4) ^ 2 = (25k^2 + 30k + 9) + (25r^2 + 40r + 16) = 25k^2 + 25r^2 + 30k + 40r + 25.
Заметим, что каждое слагаемое из результата кратно 5ти, то есть имеет остаток 0 при делении на 5. Остаток суммы равен сумме остатков, поэтому результат также кратен 5, то есть праивльный ответ- D) 0.
a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Для начала допустим, что число п- это p, а число м- это m (будем обозначать более математически :) )
Если целое число имеет остаток q при делении на 5, то его можно представить в виде n = 5 * p + q, где n- само число, а p- целое число.
Сделаем тоже самое с числами из условия:
p = 5 * k + 3
m = 5 * r + 4
Теперь просто возведём каждое в квадрат и сложим 2 результата:
p ^ 2 + m ^ 2 = (5k + 3) ^ 2 + (5r + 4) ^ 2 = (25k^2 + 30k + 9) + (25r^2 + 40r + 16) = 25k^2 + 25r^2 + 30k + 40r + 25.
Заметим, что каждое слагаемое из результата кратно 5ти, то есть имеет остаток 0 при делении на 5. Остаток суммы равен сумме остатков, поэтому результат также кратен 5, то есть праивльный ответ- D) 0.