Обозначим высоту каждой части х, высота большого конуса 3х Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников: радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x; V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x; V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x; По условию V₃- V₂=38 или (27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
Пусть расстояние от В до точки встречи S км/ч. Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км: (18+S) / x = 4/3 отсюда Х = 3 * (18+S) / 4 За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км: (18-S) / (х-5) = 4/3 (18+S) / x = (18-S) / (х-5) (18+S) (x-5) = (18-S) x 18x - 90 + Sx - 5S = 18x - Sx 2Sx - 5S - 90 = 0 подставляем x,выраженное через S (Х = 3 * (18+S) / 4) 2S * 3 (18+S) / 4 - 5S - 90 = 0 1.5 S (18+S) - 5S - 90 = 0 1.5 S^2 + 27S - 5S - 90 = 0 1.5S^2 + 22S - 90 = 0 D = 22^2 + 4*1.5 * 90 = 484 + 540 = 1024 = 32^2 S1 = (-22 - 32)/3 <0 S2 = (-22+32)/3 = 10/3 = 3 1/3 ответ: на расстоянии 3_1/3 км. Проверка: первый за 4/3 часа проехал 18+10/3 = 64/3 км. Его скорость 64/3 / (4/3) = 16 км/ч. Скорость второго 16-5=11 км/ч. За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 18 - 44/3 = 10/3 км от пункта В
Пусть радиус меньшего круга r, тогда из подобия прямоугольных треугольников:
радиус среднего круга 2r, радиус основания 3r.
Тогда V₁( малого конуса)=(1/3)·πr²x;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x;
V₃(всего конуса, большого конуса)=(1/3)·π(3r)²·3x=(27/3)·πr²x;
По условию
V₃- V₂=38
или
(27/3)·πr²x -(8/3)·πr²x=38 ⇒πr²x=6
Значит
V₁( малого конуса)=(1/3)·πr²x=(1/3)·6=2;
V₂(среднего конуса)=(1/3)·π(2r)²·2x=(8/3)·πr²x=(8/3)·6=16
V( средней части)=V₂-V₁=16-2=14.
О т в е т. 14