1. Рекуррентное соотношение an = an – 1 + 2 вместе с условием a1 = 1 задает арифметическую прогрессию с первым членом 1 и разностью 2: 1, 3, 5, 7, … . Это последовательность нечетных чисел. 2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени. Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации. 3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
А) 2; 2 3/14; 9 5/9; 1 5/53; 1 6/7; 1 7/38;
1 7/12; 6 7/9; 13; 2 5/16; 1 4/31; 7; 2;
3 7/22; 1 8/27.
Б) 2 8/33; 1 7/12; 4; 7 8/9; 1 11/48; 11;
8 5/8; 2 6/19; 1 7/40; 1 5/17; 1 5/32;
1 7/116; 7; 3 8/15; 3 6/7.
Пошаговое объяснение:
Делим числитель на знаменатель, выделяем целую часть, остаток записываем в числитель, знаменатель остается тот же.
А) 22/11=2; 31/14=2 3/14; 86/9=9 5/9;
58/53=1 5/53; 13/7=1 6/7; 45/38=1 7/38;
19/12=1 7/12; 61/9=6 7/9; 39/3=13; 37/16=2 5/16; 35/31=1 4/31; 49/7=7;
12/6=2; 73/22=3 7/22; 35/27=1 8/27;
Б) 74/33=2 8/33; 19/12=1 7/12; 8/2=4;
71/9=7 8/9; 59/48=1 11/48; 33/3=11;
69/8=8 5/8; 44/19=2 6/19; 47/40=1 7/40;
22/17=1 5/17; 37/32=1 5/32;
123/116=1 7/116; 63/9=7; 53/15=3 8/15;
27/7=3 6/7
2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени.
Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации.
3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .