Решение. Пусть угол между вертикалью и нитью, прикрепленной к грузу массы m2, равен α, а ускорение груза массы m1 относительно стола a/. Тогда ускорение груза массы m1 относительно земли равно a − a/, горизонтальная составляющая ускорения груза массы m2 относительно земли равна a − a/sinα. Запишем второй закон Ньютона
Перепишем два последних уравнения
Возведем в квадрат и сложим части уравнений
Откуда
При наличии проскальзывания (a/ > 0) решая совместно уравнение (2) и первое уравнение из системы (1), получаем
где из (2), подставляя вместо T (3), получим ограничение
Без проскальзывания (a/ = 0), груз m1 неподвижен, имеем
Пошаговое объяснение:
1) 43 дм³- 59 см³=42 941 см³=42,941 дм³
1 дм³= 1000 см³
43 дм³=43 000 см ³
43000см³-59 см³=42 941 см³=42,941 дм³
2) 74 м³- 145 дм³=73,855 м³
1 м³=1000 дм³
74 м³=74 000 дм³
74 000-145=73 855 дм³=73,855 м³
3) 50 см³ - 35 мм³=49,965 см³
1 см³=1000 мм³
50 см³=50 000 мм³
50 000-35=49 965 мм³= 49,965 см³
4) 10 см³ - 63 мм³=10 000 мм³-63 мм³=9937 мм³=9,037 см³
5) 1 м³- 4750 см³= 995 250 см³=0,99525 м³
1 м³= 1 000 000 см³
1 000 000 - 4750=995 250 см³
6) 69 см³-609 мм³=69000-609=68 391 мм³=68,391 см³
Пусть угол между вертикалью и нитью, прикрепленной к грузу массы m2, равен α, а ускорение груза массы m1 относительно стола a/. Тогда ускорение груза массы m1 относительно земли равно a − a/, горизонтальная составляющая ускорения груза массы m2 относительно земли равна a − a/sinα. Запишем второй закон Ньютона
Перепишем два последних уравнения
Возведем в квадрат и сложим части уравнений
Откуда
При наличии проскальзывания (a/ > 0) решая совместно уравнение (2) и первое уравнение из системы (1), получаем
где из (2), подставляя вместо T (3), получим ограничение
Без проскальзывания (a/ = 0), груз m1 неподвижен, имеем
где