В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Анна3672
Анна3672
24.05.2020 06:43 •  Математика

Составить уравнение касательной к плоскости и нормали к данной поверхности в данной точке. √4+х^2+y^2 выражение все под корнем точка(3; 6; 7)

Показать ответ
Ответ:
starceva83
starceva83
12.06.2020 07:54

поверхност задана в явном виде

z(x,y)=\sqrt{4+x^2+y^2};

Частные производные равны

z'_x=\frac{1}{2\sqrt{4+x^2+y^2}}*(2x)=\frac{x}{\sqrt{4+x^2+y^2}};\\\\z'_y=\frac{y}{\sqrt{4+x^2+y^2}}

Значение частных производнхых в данной точке равны

z'_x|(3;6;7)=\frac{3}{\sqrt{4+3^2+6^2}}=\frac{3}{\sqrt{4+9+36}}=\frac{3}{7};\\\\z'_y|(3;6;7)=\frac{6}{7}

Уравнение касательной

z'_x |(x_o;y_o;z_o)*(x-x_o)+z'_y |(x_o;y_o;z_o)*(y-y_o)=z-z_0;\\\\ \frac{3}{7}*(x-3)+\frac{6}{7}*(y-6)=z-7;\\\\ 3(x-3)+6(y-6)=7(z-7);\\\\ 3x-9+6y-36-7z+49=0;\\\\ 3+-6y-7z+4=0;

Координаты нормали

(-\frac{z'_x|(x_o;y_o;z_o)}{\sqrt{(z'_x|(x_o;y_o;z_o))^2+(z'_y|(x_o;y_o;z_o))^2+1}};-\frac{z'_y|(x_o;y_o;z_o)}{\sqrt{(z'_x|(x_o;y_o;z_o))^2+(z'_y|(x_o;y_o;z_o))^2+1}};1)=\\\\

(-\frac{\frac{3}{7}}{\sqrt{(\frac{3}{7})^2+(\frac{6}{7})^2+1}};-\frac{\frac{3}{7}}{\sqrt{(\frac{6}{7})^2+(\frac{6}{7})^2+1}};1}=\\\\ (-\frac{3}{\sqrt{46}};-\frac{6}{\sqrt{46}};1)

Уравнение нормали

\frac{x-x_0}{l}=\frac{y-y_o}{m}=\frac{z-z_0}{n};\\\\ \frac{x-3}{-\frac{3}{\sqrt{46}}}=\frac{y-5}{-\frac{6}{\sqrt{46}}}=\frac{z-7}{1}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота