В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
EnsteinMEGAMOZG
EnsteinMEGAMOZG
02.03.2021 10:32 •  Математика

Составить уравнение линии, для каждой точки которой расстояние до точки а (0; 1) вдвое меньше расстояния до прямой y = 4

Показать ответ
Ответ:
LogiutNowakk
LogiutNowakk
28.07.2020 23:47
Пусть М(Xm;Ym) - точка искомой линии, уравнение которой мы ищем.
Мы знаем, что расстояние между точками А и М - это модуль вектора АМ, координаты которого находятся, как разность координат его конца и начала.
итак, |АМ|=√[(Xm-Xa)²+(Ym-Ya)²]=√[Xm²+(Ym-1)²].
Формула расстояния от точки до прямой, заданной уравнением прямой АХ+ВY+C=0 имеет вид: d=|A*Xm+B*Ym+C|/√(A²+B²).
В нашем случае d=|Ym-4|/1 = |Ym-4|.
По условию 2*|АМ|=|Ym-4|. То есть 2√[Xm²+(Ym-1)²]=Ym-4 или, если возвести в квадрат обе части уравнения,
4(Xm²+Ym²-2Ym+1)=Ym²-8Ym+16 => 4Xm²+3Ym²=12 или
Xm²/3+Ym²/4=1. А это - каноническое уравнение эллипса.
Его полуоси а=√3 и b=2
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота