1) Обозначим количество городов в 1-ой республике за n, а во 2-ой - за m.
2) По условию каждый город в 1-ой респ соединен с каждым городом 2-ой респ и плюс еще со столичным городом, т. е. всего дорог:
1 город с m городами и со столицей m+1 дорог
n городов с m городами и со столицей n*(m+1) дорог
3) Также и с городами во 2-ой респ, но теперь будем считать только те дороги, которые связывают их со столицей, так как мы уже посчитали дороги, связывающие с городами в 1-ой респ. Их будет m.
4) Значит в стране всего n*(m+1)+m=29 дорог и из этого нам надо найти наименьшее значение суммы n+m+1 (включая столицу):
n*(m+1)+m=29
nm+n+m=29
n+m+1=30-nm, Сюда можно подобрать числа n=4 и m=5, так как их значения не могут быть дробными или отрицательными(n,m∈N, след-но n+m+1>0, а значит и 30-nm>0, откуда nm<30 и чтобы равенство n+m+1=30-nm было верным подходят только n=4 и m=5, так как n,m∈N и nm<30)
Следовательно наименьшее количество городов может равнятся n+m+1=4+5+1=10
Для начала построим на координатной плоскости треугольник АВС по указанным координатам. Смотри скан. Точка А1 должна быть симметричной точке А относительно прямой СВ. Поскольку СВ параллельна оси х, то точка симметрии А1 будет находиться на прямой, перпендикулярной оси у. и проходящей через точку А⇒А1будет иметь координаты(1;0). смотри скан. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен. потому что треугольник АВС прямоугольный и ранобедренный, и фигура АВСА1-квадрат. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен относительно прямой а, смотри скан. Уравнение для прямой а может быть представлено формулой у=-х+3
10 городов
Пошаговое объяснение:
1) Обозначим количество городов в 1-ой республике за n, а во 2-ой - за m.
2) По условию каждый город в 1-ой респ соединен с каждым городом 2-ой респ и плюс еще со столичным городом, т. е. всего дорог:
1 город с m городами и со столицей m+1 дорог
n городов с m городами и со столицей n*(m+1) дорог
3) Также и с городами во 2-ой респ, но теперь будем считать только те дороги, которые связывают их со столицей, так как мы уже посчитали дороги, связывающие с городами в 1-ой респ. Их будет m.
4) Значит в стране всего n*(m+1)+m=29 дорог и из этого нам надо найти наименьшее значение суммы n+m+1 (включая столицу):
n*(m+1)+m=29
nm+n+m=29
n+m+1=30-nm, Сюда можно подобрать числа n=4 и m=5, так как их значения не могут быть дробными или отрицательными(n,m∈N, след-но n+m+1>0, а значит и 30-nm>0, откуда nm<30 и чтобы равенство n+m+1=30-nm было верным подходят только n=4 и m=5, так как n,m∈N и nm<30)
Следовательно наименьшее количество городов может равнятся n+m+1=4+5+1=10
ответ: 10 городов
Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен. потому что треугольник АВС прямоугольный и ранобедренный, и фигура АВСА1-квадрат.
Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен относительно прямой а, смотри скан. Уравнение для прямой а может быть представлено формулой у=-х+3