Мақалада тарихи деректердің негізінде IV-V ғасырлардағы Византия империясы мен ғұндардың қарым-қатынасы қарастырылады. Қазіргі таңда дүниежүзі тарихында Түркі тайпаларының соның ішінде қарастырылып отырған мәселеміз - Ғұн державасының тарихи маңызы өте зор. Халықтардың Ұлы қоныс аудару кезеңінде ғұндар Орталық Азия жерінен Батыс Еуропа жеріне Шығыс мәдениетінің элементтерін алып келді. Бұл отан тарихында ең өзекті мәселелердің бірі болып табылады. Түйін сөздер; Византия, ғұндар, тарихи дерек, империя, диадема, тайпа, өркениет.
А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
Мақалада тарихи деректердің негізінде IV-V ғасырлардағы Византия империясы мен ғұндардың қарым-қатынасы қарастырылады. Қазіргі таңда дүниежүзі тарихында Түркі тайпаларының соның ішінде қарастырылып отырған мәселеміз - Ғұн державасының тарихи маңызы өте зор. Халықтардың Ұлы қоныс аудару кезеңінде ғұндар Орталық Азия жерінен Батыс Еуропа жеріне Шығыс мәдениетінің элементтерін алып келді. Бұл отан тарихында ең өзекті мәселелердің бірі болып табылады. Түйін сөздер; Византия, ғұндар, тарихи дерек, империя, диадема, тайпа, өркениет.
А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
Пошаговое объяснение:
А) не может