Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
Если известно, что центр участка имел квадратную форму, то, обозначив его сторону за а метров, площадь этого участка будет равна а * а м2. Если также были участки в виде 4 полукругов, то их при диаметре а метров, площадь каждого полукруга будет равна 1/2π(а/2)2. Т.е. все 4 полукруга в сумме имеют площадь:
4 * 1/2π(а/2)2 = 2π(а/2)2 = 1/2πа2. Если принять π ≈ 3, тогда площадь равна 3/2а2 = 1,5а2.
Получаем в сумме площадь всех участков:
а2 + 1,5а2 = 90,
2,5а2 = 90,
а2 = 36,
а = 6.
Значит радиус полукруга равен 6/2 = 3 (м).
А ограждение имеет длину, равную длине 4 полукругов: 4 * 1/2πа = 2 * 3 * 6 = 36 (м).
ответ: сторона квадрата 6 м, радиус 3 м, а длина ограждения 36 м.
1 см³ - 100 мм³ = 1.000 мм³ - 100 мм³ = 900 мм³ = 0,9 см³
1 дм³ - 200 см³ = 1 дм³ - 0,2 дм³ = 0,8 дм³
100 м² + 2 га = 100 м² + 20.000 м² = 20.100 м²
800 а : 2 = 400 а
1 000 см³ - 1 дм³ = 1.000 см³ - 1.000 см³ = 0 см³
400 м² : 4 = 100 м²
200 дм³ + 100 м³ = 200 дм³ + 100.000 дм³ = 100.200 дм³
10 см³ + 1.000 см³ = 1.010 см³
5 м³ : 100 дм³ = 5.000 дм³ : 100 дм³ = 50 дм³ = 0,05 м³
500 м³ + 100 дм³ = 500.000 дм³ + 100 дм³ = 500.100 дм³ = 500,1 м³
5 м³ + 100 дм³ = 5.000 дм³ + 100 дм³ = 5.100 дм³ = 5,1 м³
50 м² + 100 дм² = 5.000 дм² + 100 дм² = 5.100 дм² = 50,1 м²