В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
badery346
badery346
20.04.2020 01:19 •  Математика

Составьте уравнение касательной к графику функции в точке указанной абсциссой 1. y=-x^2+9 x0=2
2. y=-2/x x0=2
3. y=cos x x0=-П

Показать ответ
Ответ:
Инокеньтий007
Инокеньтий007
22.01.2024 12:31
Добрый день! Давайте решим поставленные вопросы по очереди.

1. Дано уравнение функции: y = -x^2 + 9. Нам нужно составить уравнение касательной к этой функции в точке с заданной абсциссой x0 = 2.

Касательная к графику функции в заданной точке имеет такой же наклон, как и сам график функции в этой точке. Также знаем, что касательная проходит через данную точку.

Шаг 1: Найдем значение функции в точке x0 = 2

Подставим x0 = 2 в уравнение функции:
y = -(2)^2 + 9
y = -4 + 9
y = 5

Таким образом, точка пересечения касательной с графиком функции имеет координаты (2, 5).

Шаг 2: Найдем значение производной функции в точке x0 = 2

Для этого нужно найти производную функции y = -x^2 + 9 и подставить в нее значение x0 = 2.

y' = -2x

Подставим x = 2:
y' = -2(2)
y' = -4

Таким образом, значение производной функции в данной точке равно -4.

Шаг 3: Составим уравнение касательной к графику функции

Уравнение касательной к графику функции имеет вид: y - y1 = m(x - x1), где (x1, y1) - точка касания касательной с графиком функции, а m - значение производной функции в этой точке.

Подставим значения:
x1 = 2, y1 = 5, m = -4

Уравнение касательной:
y - 5 = -4(x - 2)

Далее можно упростить уравнение и записать его в других форматах, например, в общем виде или в виде с коэффициентами a, b, c.

2. Дано уравнение функции: y = -2/x. Нам нужно составить уравнение касательной к этой функции в точке x0 = 2.

Шаг 1: Найдем значение функции в точке x0 = 2

Подставим x0 = 2 в уравнение функции:
y = -2/2
y = -1

Таким образом, точка пересечения касательной с графиком функции имеет координаты (2, -1).

Шаг 2: Найдем значение производной функции в точке x0 = 2

Для этого нужно найти производную функции y = -2/x и подставить в нее значение x0 = 2.

y' = 2/x^2

Подставим x = 2:
y' = 2/(2)^2
y' = 2/4
y' = 1/2

Таким образом, значение производной функции в данной точке равно 1/2.

Шаг 3: Составим уравнение касательной к графику функции

Уравнение касательной к графику функции имеет вид: y - y1 = m(x - x1), где (x1, y1) - точка касания касательной с графиком функции, а m - значение производной функции в этой точке.

Подставим значения:
x1 = 2, y1 = -1, m = 1/2

Уравнение касательной:
y - (-1) = (1/2)(x - 2)

Далее можно упростить уравнение и записать его в других форматах, например, в общем виде или в виде с коэффициентами a, b, c.

3. Дано уравнение функции: y = cos(x). Нам нужно составить уравнение касательной к этой функции в точке x0 = -П.

Шаг 1: Найдем значение функции в точке x0 = -П

Подставим x0 = -П в уравнение функции:
y = cos(-П)
y = -1

Таким образом, точка пересечения касательной с графиком функции имеет координаты (-П, -1).

Шаг 2: Найдем значение производной функции в точке x0 = -П

Для этого нужно найти производную функции y = cos(x) и подставить в нее значение x0 = -П.

y' = -sin(x)

Подставим x = -П:
y' = -sin(-П)
y' = 0

Таким образом, значение производной функции в данной точке равно 0.

Шаг 3: Составим уравнение касательной к графику функции

Уравнение касательной к графику функции имеет вид: y - y1 = m(x - x1), где (x1, y1) - точка касания касательной с графиком функции, а m - значение производной функции в этой точке.

Подставим значения:
x1 = -П, y1 = -1, m = 0

Уравнение касательной:
y - (-1) = 0(x - (-П))
y + 1 = 0

Далее можно упростить уравнение, если требуется, или записать его в других форматах.

Вот таким образом мы можем составить уравнения касательных к данным графикам функций в указанных точках. Если у вас возникнут еще вопросы, обращайтесь!
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота