В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Лина230502
Лина230502
02.03.2022 01:09 •  Математика

Составьте уравнение плоскости, проходящей через точку м (2; 3; -1) перпендикулярно прямой х=t-3, y=2t+5, z=1-3t. каким числом является абсцисса точки плоскости, имеющая координаты y=0, z=0?

Показать ответ
Ответ:
FireFlyWasDeadBefore
FireFlyWasDeadBefore
07.10.2020 15:05
Будем искать уравнение плоскости в виде A*x+B*y+C*z+D=0. Так как по условию плоскость перпендикулярна прямой, то нормальный вектор плоскости n{A,B,C) параллелен этой прямой. Прямая задана системой параметрических уравнений, из первого из которых находим t=x+3, из второго - t=(y-5)/2, из третьего - t=(1-z)/3. Отсюда следует каноническое уравнение прямой: (x+3)/1=(y-5)/2=(1-z)/3. Здесь числа 1,2,3 - координаты направляющего вектора прямой n0. Так как векторы n и n0 параллельны, то их координаты пропорциональны, то есть A/1=B/2=C/3. Так как длина нормального вектора может быть произвольной, то положим A=1, тогда B=2 и C=3 и уравнение плоскости принимает вид x+2*y+3*z+D=0. Подставляя в это уравнение координаты точки M, приходим к уравнению 5+D=0, откуда D=-5. Значит, уравнение плоскости таково: x+2*y+3*z-5=0. Если же y=z=0, то x=5. ответ: 1) x=2*y+3*z-5=0, 2) x=5.  
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота