сложение рациональных чисел — это сложение целых и дробных положительных и отрицательных чисел. сложение положительных (натуральных) чисел и дробей нами изучено, поэтому рассмотрим подробно сложение положительных и отрицательных чисел и дробей с одинаковыми и разными знаками.
при сложении рациональных чисел с разными знаками можно подразумевать, что положительное число — это ваш «доход», а отрицательное число — это ваш «долг». результатом вычисления будет то, что у вас останется от «дохода», когда вы отдадите «долг».
правило. при сложении двух чисел с разными знаками из большего модуля вычитают меньший и перед полученным числом ставят знак того слагаемого, модуль которого больше.
два знака подряд в арифметических действиях не ставятся, их нужно разделять скобками, значит, отрицательное число в сумме чисел после знака «+» нужно всегда брать в скобки.
при сложении чисел с разными знаками и результате возможны такие варианты:
число положительное больше числа отрицательного (ваш «доход» больше вашего «долга»), тогда сумма будет со знаком «плюс» («+»).число положительное меньше числа отрицательного (ваш «доход» меньше вашего «долга»), тогда сумма будет со знаком «минус» («-»).
правило. при сложении двух чисел с одинаковыми знакамискладывают их модули и перед полученным числом ставят их общий знак.
при сложении чисел с одинаковыми знаками в результате возможны такие варианты:
числа положительные (ваш «доход» увеличивается еще на некоторый «доход»), тогда сумма будет со знаком «плюс» («+»).числа отрицательные (ваш «долг» увеличивается еще на величину некоторого вашего «долга»), тогда сумма будет со знаком «минус» («-»).
при вычислении числовых и буквенных выражений действия с положительными и отрицательными числами можно выполнять «шаг за шагом» (по порядку записи слагаемых), тогда используются предыдущие два правила. можно также производить вычисления с законов сложения (переместительного и сочетательного).
правило. чтобы вычислить сумму рациональных чисел, нужно отдельно сложить все положительные числа (заключив в скобки и поставив перед скобкой знак «+») и отдельно сложить все отрицательные числа(заключив в скобки и поставив перед скобкой знак «-»). затем из большей по модулю суммы вычесть меньшую по модулю сумму, а перед полученным результатом поставить знак той суммы, модуль которой больше.
особенности сложения рациональных чисел с 0
нуль — это отсутствие у вас «дохода» и «долга».
если с 0 складывается положительное число, то сумма равна вашему «доходу» (со знаком «+»). например: 0 + 17 — 17.если с 0 складывается отрицательное число, то сумма равна вашему «долгу» (со знаком «-»). например: 0 + (- 29) = -29.если два слагаемых — нули, то и сумма равна 0. например: 0 + 0 = 0.
Задания суммативного оценивания за 4 четверть по предмету «Математика»
1. Ряд данных состоит из 25 натуральных чисел. Какая из характеристик этого ряда может
быть дробным числом?
A) Мода
B) Медиана
C) Размах
D) Среднее арифметическое
2. Объём прямоугольного параллелепипеда равен V см3, стороны его основания равны 5 см и
3 см, а высота – h см. Задайте формулой зависимость V от h.
A) V=8h
B) V=15h
C) V=16h
D) V=30h
3. На координатной плоскости постройте график прямой пропорциональности y = –3x
4. В кафе «Пицца» в течение 15 дней фиксировалось количество заказов с доставкой на дом.
Получили такой ряд данных:
39, 33, 45, 25, 33, 40, 47, 38, 34, 33, 40, 44, 45, 32, 27.
Найдите размах, среднее арифметическое, моду и медиану полученного ряда.
5. На рисунке изображен график движения туриста.
Рассмотрев график, ответьте на вопросы:
a) На каком расстоянии от дома был турист через 2 часа после выхода из дома?
b) Сколько времени турист затратил на остановку?
c) Сколько часов был турист в пути, когда до дома осталось пройти 4 км?
d) С какой скоростью шёл турист первые два часа?
6. Решите систему уравнений : 3х-у=5
4х+у=9
7.
Длина прямоугольника равна сумме удвоенного значения ширины и числа 4.
a) Запишите данное утверждение с символов.
b) Составьте таблицу для данной зависимости и постройте ее график.
сложение рациональных чисел — это сложение целых и дробных положительных и отрицательных чисел. сложение положительных (натуральных) чисел и дробей нами изучено, поэтому рассмотрим подробно сложение положительных и отрицательных чисел и дробей с одинаковыми и разными знаками.
при сложении рациональных чисел с разными знаками можно подразумевать, что положительное число — это ваш «доход», а отрицательное число — это ваш «долг». результатом вычисления будет то, что у вас останется от «дохода», когда вы отдадите «долг».
правило. при сложении двух чисел с разными знаками из большего модуля вычитают меньший и перед полученным числом ставят знак того слагаемого, модуль которого больше.
два знака подряд в арифметических действиях не ставятся, их нужно разделять скобками, значит, отрицательное число в сумме чисел после знака «+» нужно всегда брать в скобки.
при сложении чисел с разными знаками и результате возможны такие варианты:
число положительное больше числа отрицательного (ваш «доход» больше вашего «долга»), тогда сумма будет со знаком «плюс» («+»).число положительное меньше числа отрицательного (ваш «доход» меньше вашего «долга»), тогда сумма будет со знаком «минус» («-»).правило. при сложении двух чисел с одинаковыми знакамискладывают их модули и перед полученным числом ставят их общий знак.
при сложении чисел с одинаковыми знаками в результате возможны такие варианты:
числа положительные (ваш «доход» увеличивается еще на некоторый «доход»), тогда сумма будет со знаком «плюс» («+»).числа отрицательные (ваш «долг» увеличивается еще на величину некоторого вашего «долга»), тогда сумма будет со знаком «минус» («-»).при вычислении числовых и буквенных выражений действия с положительными и отрицательными числами можно выполнять «шаг за шагом» (по порядку записи слагаемых), тогда используются предыдущие два правила. можно также производить вычисления с законов сложения (переместительного и сочетательного).
правило. чтобы вычислить сумму рациональных чисел, нужно отдельно сложить все положительные числа (заключив в скобки и поставив перед скобкой знак «+») и отдельно сложить все отрицательные числа(заключив в скобки и поставив перед скобкой знак «-»). затем из большей по модулю суммы вычесть меньшую по модулю сумму, а перед полученным результатом поставить знак той суммы, модуль которой больше.
особенности сложения рациональных чисел с 0нуль — это отсутствие у вас «дохода» и «долга».
если с 0 складывается положительное число, то сумма равна вашему «доходу» (со знаком «+»). например: 0 + 17 — 17.если с 0 складывается отрицательное число, то сумма равна вашему «долгу» (со знаком «-»). например: 0 + (- 29) = -29.если два слагаемых — нули, то и сумма равна 0. например: 0 + 0 = 0.