100 человек
Пошаговое объяснение:
Число тех, кто не решил ни одной задачи возьмём за х
800 задач решили по алгебре
700 задач решили по геометрии
600 задач решили по тригонометрии
А+Г=600 школьников
А+Т=500 школьников
Г+Т=400 школьников
А+Г+Т= 300 школьников
1) А+Г+Т=800+700+600=2100 -всего решили задач по А,Г,Т
т.к. 300 человек (которые решили по три задачи) учтены при А+Г, А+Т, Г+Т определим сколько человек решили по две задачи.
2) А+Г=600 - 300=300 чел решили только две задачи А+Г
3) А+Т=500- 300 =200 чел решили только две задачи А+Т
4) Г+Т=400-300= 100 чел. решили только две задачи Г+Т
5) 300+200+100=600 человек решили две задачи
6) 600*2+300*3=1200+900=2100 задач решили школьники (которые решили по две и по три задачи)
7)2100-2100=0- задач решили школьники (которые решили только по одной задачи)
8) 300+600=900 школьников решили две и более задач
9) 1000-900=100 школьников ничего не решили
ответ: 100 школьников ничего не решили.
Ниже прикрепил картинку, чтобы было видно визуально
Примем первое число за a, второе за b, третье за с для удобства записи.
Дано: a/c=2,5; b/c=1,5; (a+b+c)/3=20. (если записать все данные с выражений).
Найти: а - ? b - ? c - ?
Для начала выразим числа a и b через с при уже записанных выражений.
1. a/c=2,5; a=с*2,5.
2. b/c=1,5; b=с*1,5.
Теперь мы можем подставить полученные выражения вместо чисел в формулу, которую составили для вычисления среднего арифметического.
3. (а+b+c)/3=20.
(2,5c + 1,5c + c) / 3 = 20.
Затем мы можем решить это как обыкновенное линейное уравнение.
4. (2,5c + 1,5c + c) / 3 = 20.
5с / 3 = 20.
5с = 60
с = 12.
Далее подставляем в формулы, выведенные в пунктах 1 и 2 значение числа с и находим числа a и b.
5. а=c*2,5.
а = 12 * 2,5 = 30.
6. b=с*1,5.
b = 12 * 1,5 = 18.
В качестве самопроверки посчитаем среднее арифметическое эти чисел.
7. (30 + 18 + 12) / 3 = 20.
Результаты сошлись => числа подобраны верно.
ответ: 30; 18; 12.
100 человек
Пошаговое объяснение:
Число тех, кто не решил ни одной задачи возьмём за х
800 задач решили по алгебре
700 задач решили по геометрии
600 задач решили по тригонометрии
А+Г=600 школьников
А+Т=500 школьников
Г+Т=400 школьников
А+Г+Т= 300 школьников
1) А+Г+Т=800+700+600=2100 -всего решили задач по А,Г,Т
т.к. 300 человек (которые решили по три задачи) учтены при А+Г, А+Т, Г+Т определим сколько человек решили по две задачи.
2) А+Г=600 - 300=300 чел решили только две задачи А+Г
3) А+Т=500- 300 =200 чел решили только две задачи А+Т
4) Г+Т=400-300= 100 чел. решили только две задачи Г+Т
5) 300+200+100=600 человек решили две задачи
6) 600*2+300*3=1200+900=2100 задач решили школьники (которые решили по две и по три задачи)
7)2100-2100=0- задач решили школьники (которые решили только по одной задачи)
8) 300+600=900 школьников решили две и более задач
9) 1000-900=100 школьников ничего не решили
ответ: 100 школьников ничего не решили.
Ниже прикрепил картинку, чтобы было видно визуально
Примем первое число за a, второе за b, третье за с для удобства записи.
Дано: a/c=2,5; b/c=1,5; (a+b+c)/3=20. (если записать все данные с выражений).
Найти: а - ? b - ? c - ?
Для начала выразим числа a и b через с при уже записанных выражений.
1. a/c=2,5; a=с*2,5.
2. b/c=1,5; b=с*1,5.
Теперь мы можем подставить полученные выражения вместо чисел в формулу, которую составили для вычисления среднего арифметического.
3. (а+b+c)/3=20.
(2,5c + 1,5c + c) / 3 = 20.
Затем мы можем решить это как обыкновенное линейное уравнение.
4. (2,5c + 1,5c + c) / 3 = 20.
5с / 3 = 20.
5с = 60
с = 12.
Далее подставляем в формулы, выведенные в пунктах 1 и 2 значение числа с и находим числа a и b.
5. а=c*2,5.
а = 12 * 2,5 = 30.
6. b=с*1,5.
b = 12 * 1,5 = 18.
В качестве самопроверки посчитаем среднее арифметическое эти чисел.
7. (30 + 18 + 12) / 3 = 20.
Результаты сошлись => числа подобраны верно.
ответ: 30; 18; 12.