ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
Пошаговое объяснение:
а) 4,8,12,16…;
=4n
б) 1,-1,1,-1….
=
2. Последовательность задана в аналитической форме yn=2n+10
Найти 10,50,63 член последовательности.
y₁₀=2·10+10=30
y₅₀=2·50+10=110
y₆₃=2·63+10=136
3. Последовательность задана в аналитической форме yn=n² +2.
Найти 5,10,13 член последовательности.
y₅=5²+2=25+2=27
y₁₀=10²+2=102
y₁₃=13²+2=171
4. Последовательность задана в рекурсивном виде y1=5
y n =y n-1 −3 , если n=2,3,4…
Найти 5,11,12 член последовательности.
y₅=y₄-3=y₃-3-3=y₂-3-3-3=y₁-3-3-3-3=y₁-4·3=5-4·3=-7
y₁₁=y₁₀-3=...=y₁-(11-1)·3=5-10·3=-25
y₁₂=y₁₁-3=...=y₁-(12-1)·3=5-11·3=-28
Это арифметическая прогрессия с разностью -3. Несложно доказать преобразуя данное рекурсивное соотношение
5. Последовательность задана в рекурсивном виде y 1 =3, y 2 =8 , y n =2y n-2 +3,
если n=3,4,5…. Найти 3,4,9 член последовательности.
y₃=2y₁+3=2·3+3=9
y₄=2y₂+3=2·8+3=19
y₅=2y₃+3=2·9+3=21
y₆=2y₄+3=2·19+3=41
y₇=2y₅+3=2·21+3=45
y₈=2y₆+3=2·41+3=85
y₉=2y₇+3=2·45+3=93
ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
a
n
=
{
3
;
6
;
12
;
24
;
48
;
96
;
192
;
384
…
}
.
порядковый номер элемента
1
2
3
4
5
6
7
8
…
обозначение элемента
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
…
значение элемента
3
6
12
24
48
96
192
384
…