Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
Пусть собственная скорость пловца равна х м/мин, тогда скорость по течению равна (х+15) м/мин, а скорость против течения - (х-15) м/мин. Некоторое расстояние по течению он проплыл за 24 с = 0,4 мин, значит он проплыл: 0,4*(х+15) м, а против течения - за 40 с = 2/3 мин, значит, он проплыл 2/3*(x-15) м. По условию известно, что и по течению, и против течения мальчик проплыл одинаковое расстояние, поэтому составим уравнение:
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3
По условию известно, что и по течению, и против течения мальчик проплыл одинаковое расстояние, поэтому составим уравнение:
0,4*(x+15) = 2/3*(x-15)
0,4x + 6 = 2/3x - 10
2/5x + 6 - 2/3x + 10 = 0
6/15x - 10/15x + 16 = 0
-4/15x + 16 = 0
-4/15x = -16
4/15x = 16
x = 16 : 4/15
x = 16 * 15/4
x = 60 (м/мин) - скорость пловца
ОТВЕТ: 60 м/мин