Даны точки А(-3; -2; -1), В(-1; -4; -5), С(-4; 0; 0).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - (-3) y - (-2) z - (-1)
(-1) - (-3) (-4) - (-2) (-5) - (-1)
(-4) - (-3) 0 - (-2) 0 - (-1) = 0.
2 -2 -4
-1 2 1 = 0.
(x - (-3))(-2·1-(-4)·2) – (y - (-2))(2·1-(-4)·(-1)) + (z - (-1))(2·2-(-2)·(-1)) = 0.
6(x - (-3)) + 2(y - (-2)) + 2(z - (-1)) = 0.
6x + 2y + 2z + 24 = 0, сократим на 2.
3x + y + z + 12 = 0.
Находим вектор DE: (-11-(-7); 10-2; 13-5) = (-4; 8; 8).
Каноническое уравнение прямой DE:
(x + 7)/(-4) = (y - 2)/8 = ((z - 5)/8 = t.
Отсюда получаем параметрические уравнения прямой:
x = -4t - 7,
y = 8t + 2,
z = 8t + 5.
Подставим их в уравнение плоскости:
-12t - 21 + 8t + 2 + 8t + 5 + 12 = 0,
4t = 2, t = 2/4 = 1/2.
Это значение подставляем в параметрические уравнения.
x = -4*(1/2) - 7 = -9,
y = 8*(1/2) + 2 = 6,
z = 8*(1/2) + = 9.
Приведем к общему знаменателю (первую дробь умножим на 22, вторую на 21) :
= 22*22 / 21*22 - 21*21 / 22*21 = (484-441) / 462 = 43 / 462
2) 8 3/4 - 4 = 4 3 /4
3) 1 1/2 - 1/3 = 1 1/6
Переведем 1 1/2 в неправильную дробь (1*2+1) /2 :
= 3/2 - 1/3 =
Приведем к общему знаменателю 6:
= 3*3 /2*3 - 1*2 /2*3 =
= (9-2) /6 = 7/6 = 1 1/6
4) 10 5/8 - 3 5/6 = 6 19/24
Переведем в неправильные дроби: 10 5/8 = (10*8+5) / 8 = 85/8 ,
3 5/6 = (3*6 +5 ) /6 =23/6
Решаем дальше: 85/8 +23 /6 =
Приведем к общему знаменателю 24 , первую дробь *3 , вторую *4:
(85*3) / 8*3 + (23*4) /6*4 =(255-92) / 24= 163/24
Выделим целую часть: 163/24 = 6 19/24
5) 5/12 * 7/8 = 5*7 / 12*8 = 35 / 96
Даны точки А(-3; -2; -1), В(-1; -4; -5), С(-4; 0; 0).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA = 0.
Подставим данные и упростим выражение:
x - (-3) y - (-2) z - (-1)
(-1) - (-3) (-4) - (-2) (-5) - (-1)
(-4) - (-3) 0 - (-2) 0 - (-1) = 0.
x - (-3) y - (-2) z - (-1)
2 -2 -4
-1 2 1 = 0.
(x - (-3))(-2·1-(-4)·2) – (y - (-2))(2·1-(-4)·(-1)) + (z - (-1))(2·2-(-2)·(-1)) = 0.
6(x - (-3)) + 2(y - (-2)) + 2(z - (-1)) = 0.
6x + 2y + 2z + 24 = 0, сократим на 2.
3x + y + z + 12 = 0.
Находим вектор DE: (-11-(-7); 10-2; 13-5) = (-4; 8; 8).
Каноническое уравнение прямой DE:
(x + 7)/(-4) = (y - 2)/8 = ((z - 5)/8 = t.
Отсюда получаем параметрические уравнения прямой:
x = -4t - 7,
y = 8t + 2,
z = 8t + 5.
Подставим их в уравнение плоскости:
-12t - 21 + 8t + 2 + 8t + 5 + 12 = 0,
4t = 2, t = 2/4 = 1/2.
Это значение подставляем в параметрические уравнения.
x = -4*(1/2) - 7 = -9,
y = 8*(1/2) + 2 = 6,
z = 8*(1/2) + = 9.