А) 2/5 и 5/12 = 8/60 и 25/60Б) 5/12 и 7/8 = 10/24 и 21/24В) 6/17 и 11/34 = 204/578 и 187/578Г) 5/16 и 5/12 = 15/48 и 20/48Д) 7/33 и 3/77 = 48/231 и 9/231Е) 5/22 и 2/55 = 25/110 и 4/110Ж) 4/15 и 3/20 = 16/60 и 9/60З) 5/121 и 8/99 = 40/1089 и 88/1089И) 1/72 и 1/56 = 7/504 и 9/504К) 1/48 и 1/72 = 3/144 и 2/144Л) 2/77и 3/44 = 8/308 и 21/308М) 1/51 и 1/68 = 4/204 и 3/204Н) 5/36 и 7/54 = 15/108 и 14/108О) 9/35 и 11/45 = 81/315 и 77/315П) 4/49 и 5/63 = 36/441 и 35/441Р) 15/98 и 13/72 = 540/3528 и 637/3528 вот чтото типо того)
Задача 3. Да, семиклассник может разрезать квадрат на прямоугольники 2,5*1, а восьмиклассник на 0,5*3,5. Задача 4. Так как длина интервала обратно пропорциональна числу трамваев, то трамваев должно быть 12: 4/5=15 15-12=3 трамвая надо добавить. Задача 5. 4*2=8 серий в неделю 44/8=5 полных недель, 44-5*8=4 4/2=2 дня, значит во вторник. Задача 6. Червяк окажется вверху к вечеру 71 дня. Задача 7. Допустим, М=9, Б=8, У=7, Л=1, Ы=2, Г=4, О=3, К=0, Н=5 87130+8213=95343 булок было 95343 штуки. Задача 8. 127 бумажек нужно разложить так: 1+2+4+8+16+32+64 Задача 9. Если с соблюдением правил, то тоже 5. Задача 10. Не могло, так как при решении ответ получается 39,8-нецелое число. Задача 11. Не может, так как сумма 1+2+,,,+1985 нечетная Задача 12. Нет,не может. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако √99 нечетное число. Задача 14. 100*4/2=200 дорог, так как из города выходит 4 дороги мы умножаем на 4, но делим на 2, так как одна дорога соединяет два города.
Задача 4. Так как длина интервала обратно пропорциональна числу трамваев, то трамваев должно быть 12: 4/5=15 15-12=3 трамвая надо добавить.
Задача 5. 4*2=8 серий в неделю
44/8=5 полных недель, 44-5*8=4
4/2=2 дня, значит во вторник.
Задача 6. Червяк окажется вверху к вечеру 71 дня.
Задача 7. Допустим, М=9, Б=8, У=7, Л=1, Ы=2, Г=4, О=3, К=0, Н=5
87130+8213=95343
булок было 95343 штуки.
Задача 8. 127 бумажек нужно разложить так: 1+2+4+8+16+32+64
Задача 9. Если с соблюдением правил, то тоже 5.
Задача 10. Не могло, так как при решении ответ получается 39,8-нецелое число.
Задача 11. Не может, так как сумма 1+2+,,,+1985 нечетная
Задача 12. Нет,не может. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако √99 нечетное число.
Задача 14. 100*4/2=200 дорог, так как из города выходит 4 дороги мы умножаем на 4, но делим на 2, так как одна дорога соединяет два города.