Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Обозначим через х количество деревьев, которое было высажено на второй улице первоначально.
Согласно условию задачи, на первой улице первоначально высадили в 1.4 раза больше деревьев, чем на второй улице, следовательно, количество деревьев, которое было высажено на первой улице первоначально составляет 1.4х.
По условию задачи, после того, как с первой улице пересадили 13 деревьев на вторую улицу, количество деревьев на двух улицах стало одинаковым, следовательно, можем составить следующее уравнение:
1.4х - 13 = х + 13.
Решаем полученное уравнение и находим сколько деревьев было высажено на второй улице первоначально.
1.4х - х = 13 + 13;
0.4х = 26;
х = 26 / 0.4;
х = 65.
Находим сколько деревьев было высажено на первой улице первоначально:
1.4х = 1.4 * 65 = 91.
ответ: первоначально на первой улице посадили 91 дерево, а на второй — 65 деревьев.
Поверхность прямоугольного параллелепипеда состоит из 6 граней, каждая из которых является прямоугольником. Противоположные грани прямоугольного параллелепипеда равны, поэтому площадь поверхности прямоугольного параллелепипеда вычисляют по формуле:
S = 2 · (a · b + a · c + b · c), где a, b, c - измерения прямоугольного параллелепипеда (длина, ширина и высота), S - площадь его поверхности.
Поэтому:
а) а = 3 см, b = 6 см, с = 7 см
S = 2 · (3 · 6 + 3 · 7 + 6 · 7) = 2 · (18 + 21 + 42) = 2 · 81 = 162 (cм²);
б) а = 11 м, b = 13 дм, с = 13 дм
S = 2 · (11 · 13 + 11 · 13 + 13 · 13) = 2 · (143 + 143 + 169) = 2 · 455 = 910 (дм²);
в) а = 40 дм, b = 9 дм, с= 6 дм
S = 2 · (40 · 9 + 40 · 6 + 9 · 6) = 2 · (360 + 240 + 54) = 2 · 654 = 1308 (дм²)
Обозначим через х количество деревьев, которое было высажено на второй улице первоначально.
Согласно условию задачи, на первой улице первоначально высадили в 1.4 раза больше деревьев, чем на второй улице, следовательно, количество деревьев, которое было высажено на первой улице первоначально составляет 1.4х.
По условию задачи, после того, как с первой улице пересадили 13 деревьев на вторую улицу, количество деревьев на двух улицах стало одинаковым, следовательно, можем составить следующее уравнение:
1.4х - 13 = х + 13.
Решаем полученное уравнение и находим сколько деревьев было высажено на второй улице первоначально.
1.4х - х = 13 + 13;
0.4х = 26;
х = 26 / 0.4;
х = 65.
Находим сколько деревьев было высажено на первой улице первоначально:
1.4х = 1.4 * 65 = 91.
ответ: первоначально на первой улице посадили 91 дерево, а на второй — 65 деревьев.