Расход=100м^2=2кг семян Расход= Участок длина=60м; Ширина=20м=? Семян Урожай= 100м^2=? Семян в 16р> чем расход; Урожай участка дл=60м; шир =20м=? Семян в 16р> чем расход
Первое решение
1)) 60•20=1200м^2 участок
2)) 1200:100=12 раз больше чем 100м^2
3)) 12•2=24 кг надо на посев
4)) 24•16= 384 кг можно собрать
ответ: с участка можно собрать 384 кг семян
Второе решение
1кг=1000г 2кг=2•1000=2000г
1)) 2000г: 100м^2= 20г/м^2 расходуется на посев
2)) 20г•16= 320г собирают с 1 м^2 урожая
3)) 60•20= 1200м^2 участок 4)) 320•1200= 384000 кг собирают с участка урожая
384000г=384000:1000=384кг
ответ: можно собрать 384 кг семян с участка
Третье решение
100м^2=1ар= 1сотка 1)) 60•20=1200м^2 площадь участка Переводим
1200м^2= 1200:100= 12ар
2)) 12•2=24кг надо на посев
3)) 24•16= 384 кг семян соберут
ответ: собрать можно 384кг семян
4 решение пропорцией
60•20=1200м^2 площадь участка 2•16=32кг собирают с 100м^2
Пусть вторая труба заполняет бассейн за х часов, а первая за (х+4) часов. За 1 час каждая из них заполняет такую часть бассейна: первая: (1/(х+4)), вторая: (1/х). По условию задачи: 7*(1/(х+4)) + 2*(1/(х+4))+(1/х)) = 1. Решаем это уравнение: (7/(х+4)) + 2*((х+х+4)/(х*(х+4)) = 1. Приводим к общему знаменателю: 7х+4х+8 = х(х+4). Получаем квадратное уравнение: х² - 7х - 8 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-7)^2-4*1*(-8)=49-4*(-8)=49-(-4*8)=49-(-32)=49+32=81;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√81-(-7))/(2*1)=(9-(-7))/2=(9+7)/2=16/2=8;x_2=(-√81-(-7))/(2*1)=(-9-(-7))/2=(-9+7)/2=-2/2=-1 этот отрицательный корень отбрасываем.
ответ: первая труба может наполнить бассейн за 8+4 = 12 часов, а вторая ха 8 часов.
Расход= Участок длина=60м; Ширина=20м=? Семян
Урожай= 100м^2=? Семян в 16р> чем расход;
Урожай участка дл=60м;
шир =20м=? Семян в 16р> чем расход
Первое решение
1)) 60•20=1200м^2 участок
2)) 1200:100=12 раз больше чем 100м^2
3)) 12•2=24 кг надо на посев
4)) 24•16= 384 кг можно собрать
ответ: с участка можно собрать 384 кг семян
Второе решение
1кг=1000г
2кг=2•1000=2000г
1)) 2000г: 100м^2= 20г/м^2 расходуется на посев
2)) 20г•16= 320г собирают с 1 м^2 урожая
3)) 60•20= 1200м^2 участок
4)) 320•1200= 384000 кг собирают с участка урожая
384000г=384000:1000=384кг
ответ: можно собрать 384 кг семян с участка
Третье решение
100м^2=1ар= 1сотка
1)) 60•20=1200м^2 площадь участка
Переводим
1200м^2= 1200:100= 12ар
2)) 12•2=24кг надо на посев
3)) 24•16= 384 кг семян соберут
ответ: собрать можно 384кг семян
4 решение пропорцией
60•20=1200м^2 площадь участка
2•16=32кг собирают с 100м^2
Х-семян соберут
100м^232кг
1200м^2Х
Х=1200•32/100
Х=12•32
Х= 384 кг соберут семян
ответ: собрать можно 384кг семян
За 1 час каждая из них заполняет такую часть бассейна:
первая: (1/(х+4)),
вторая: (1/х).
По условию задачи:
7*(1/(х+4)) + 2*(1/(х+4))+(1/х)) = 1.
Решаем это уравнение:
(7/(х+4)) + 2*((х+х+4)/(х*(х+4)) = 1.
Приводим к общему знаменателю:
7х+4х+8 = х(х+4).
Получаем квадратное уравнение:
х² - 7х - 8 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-7)^2-4*1*(-8)=49-4*(-8)=49-(-4*8)=49-(-32)=49+32=81;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√81-(-7))/(2*1)=(9-(-7))/2=(9+7)/2=16/2=8;x_2=(-√81-(-7))/(2*1)=(-9-(-7))/2=(-9+7)/2=-2/2=-1 этот отрицательный корень отбрасываем.
ответ: первая труба может наполнить бассейн за 8+4 = 12 часов, а вторая ха 8 часов.