В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
hhggg1
hhggg1
22.06.2022 01:35 •  Математика

Срешением дифференциального уравнения и коши.

Показать ответ
Ответ:
longassride
longassride
12.07.2020 10:53

Найдем сначала общее решение соответствующего однородного дифференциального уравнения:

x''+2x'+5x=0

Используя замену x'=e^{kt}, получим характеристическое уравнение

k^2+2k+5=0

k=-1\pm 2i

Общее решение однородного дифференциального уравнения:

x^*=C_1e^{-t}\cos 2t+C_2e^{-t}\sin 2t

Рассмотрим функцию: f(t)=-8e^{-1}\sin 2t. Здесь P_n(t)=-8e^{-1} откуда n=0; и \alpha=0;~\beta=2;~~~Q_n(t)=0. Сравнивая α, β с корнями характеристического уравнения, частное решение будем искать в виде:

x^{**}=A\sin 2t+B\cos 2t\\ x'=(A\sin2t+B\cos 2t)'=2A\cos 2t-2B\sin 2t\\ x''=(2A\cos 2t-2B\sin 2t)'=-4A\sin2t-4B\cos 2t

Подставляем в исходное дифференциальное уравнение:

-4A\sin2t-4B\cos 2t+4A\cos2t-4B\sin2t+5A\sin2t+5B\cos2t=-8e^{-1}\sin2t

A\sin2t+B\cos2t+4A\cos2t-4B\sin2t=-8e^{-1}\sin2t\\ \\ \sin2t(A-4B)+\cos 2t(B+4A)=-8e^{-1}\sin 2t

Приравниваем коэффициенты при cos2x и sin2x, получаем систему:

\displaystyle \left \{ {{A-4B=-8e^{-1}} \atop {B+4A=0}} \right.~~~\Rightarrow~~~\left \{ {{A+16A=-8e^{-1}} \atop {B=-4A}} \right.~~~\Rightarrow~~~\left \{ {{A=-\frac{8}{17}e^{-1}} \atop {B=\frac{32}{17}e^{-1}}} \right.

Общее решение линейного неоднородного дифференциального уравнения:

x=x^*+x^{**}=C_1e^{-t}\cos 2t+C_2e^{-t}\sin 2t-\frac{8}{17}e^{-1}\sin 2t+\frac{32}{17}e^{-1}\cos 2t

Осталось решить задачу Коши, подставляя начальные условия

x'=(C_1e^{-t}\cos 2t+C_2e^{-t}\sin 2t-\frac{8}{17}e^{-1}\sin 2t+\frac{32}{17}e^{-1}\cos 2t)'=\\ =-C_1e^{-t}\cos2t-2C_1e^{-t}\sin2t-C_2e^{-t}\sin2t+2C_2e^{-t}\cos 2t-\\ -\frac{16}{17}e^{-1}\cos2t-\frac{64}{17}e^{-1}\sin2t\\ \\ x'(0)=2;~~~2=-C_1+2C_2-\frac{16}{17}e^{-1}\\ x(0)=6;~~~~6=C_1+\frac{32}{17}e^{-1}

\displaystyle \left \{ {{2=-C_1+2C_2-\frac{16}{17}e^{-1}} \atop {6=C_1+\frac{32}{17}e^{-1}}} \right.~~~~\Rightarrow~~~~\left \{ {{C_2=4+\frac{8}{17}e^{-1}} \atop {C_1=6-\frac{32}{17}e^{-1}}} \right.

Частное решение задачки Коши:

x=(6-\frac{32}{17}e^{-1})e^{-t}\cos 2t+(4+\frac{8}{17}e^{-1})e^{-t}\sin 2t-\frac{8}{17}e^{-1}\sin 2t+\frac{32}{17}e^{-1}\cos 2t

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота