староста группы никита подсчитал, что в течение первой четверти
намазбай,
курванджан и николай получили 53 замечания от учителей.
сколько замечании получил николай, если он получил в три раза меньше
аний чем намазбай, и на 17 замечаний больше, чем курванджан
сколько замечаний получил николай если он получил в три раза меньше
замечаний, чем намазбай,и на 17 замеч больше чем курванджан?
Введите поисковой запрос
Расширенный поиск
ВОЙТИ / ЗАРЕГИСТРИРОВАТЬСЯЕдиное окно доступа к образовательным ресурсам
ДИСКРЕТНАЯ МАТЕМАТИКА: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО КУРСУ
Автор/создатель: Азарнова Т.В., Булгакова И.Н.
13
Голосов: 12
Данная работа содержит краткое изложение теории множеств, бинарных отношений и комбинаторики, соответствующее курсу лекций по дисциплине "Дискретная математика", читаемому на факультете ПММ. Пособие содержит ряд примеров, демонстрирующих использование изложенной теории для решения конкретных задач. Для закрепления материала в конце параграфов приведены задачи для самостоятельного решения, которые могут быть также использованы для проведения практических занятий.
Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.
Страницы ← предыдущая следующая →
1 2 3 4 5 6
11
Теория множеств
1) последовательности непустых множеств Χ 1 , Χ 2 ,..., Χ n ,..., такой, что
Χ 1 ⊃ Χ 2 ⊃ ... и Ι Χ n = ∅ ;
n∈Ν
2) последовательности множеств, отличных от универсального множества
Λ , такой, что Χ 1 ⊂ Χ 2 ⊂ ... и Υ Χ n = Λ ;
n∈Ν
3) семейства множеств такого, что пересечение любого конечного числа
множеств из этого семейства непусто, а пересечение всех множеств пусто.
§ 2. Прямое произведение множеств.
Бинарные отношения
Произведением (или декартовым произведением) Χ 1 × Χ 2 двух
непустых множеств Χ 1 и Χ 2 будем называть множество упорядоченных
пар (x1 , x 2 ), где x1 ∈ Χ 1 , x 2 ∈ Χ 2 . Это понятие выросло из понятия
декартовой системы координат. Данное понятие можно обобщить и на
случай n множеств. Если Χ 1 , Χ 2 ,..., Χ n - n непустых множеств, то их
произведение состоит из всевозможных упорядоченных наборов
(x1 , x 2 ,..., x n ) , x k ∈ Χ k , k = 1,..., n элементов этих множеств. Если множества
Χ 1 = Χ 2 = ... = Χ n = Χ , то их произведение Χ 1 , Χ 2 ,..., Χ n обозначается
Χ n . Так, символом R n обозначается множество упорядоченных векторов n
вещественных чисел.
Любое подмножество из произведения Χ ×Υ называется бинарным
отношением. Если Χ =Υ , то бинарное отношение называется бинарным
отношением на множестве Χ . Бинарные отношения обозначаются буквами
φ , ρ , f ,... Если пара (x, y ) принадлежит бинарному отношению ρ , то пишут
(x, y )∈ ρ или x ρ y .
Для задания бинарного отношения ρ используют те же методы, что и
для произвольных множеств, кроме того, бинарное отношение, заданное на
конечном множестве Χ , можно задать в виде графа, а бинарное отношение
на множестве R можно задать в виде декартовой диаграммы. Под графом
бинарного отношения мы понимаем схему, в которой элементы множества
Χ изображаются точками на плоскости, элементы x, y ∈ Χ , такие, что пара
(x, y )∈ ρ соединяются стрелкой, направленной от x к y , пары (x, x )∈ ρ
изображаются петлей вокруг точки x . Под декартовой диаграммой
понимают изображение пар (x, y ) ∈ ρ в декартовой прямоугольной системе
координат.
Областью определения бинарного отношения ρ называется множество
D ρ = {x ∈ Χ : ∃y (x, y )∈ ρ }.
Областью значений бинарного отношения ρ называется множество
R ρ = {y ∈Υ : ∃x (x, y )∈ ρ }.
12
Теория множеств
Бинарное отношение ρ на множестве Χ называется рефлексивным,
если для любого x ∈ Χ пара (x, x ) ∈ ρ . Если Χ - конечное множество, то
рефлексивность бинарного отношения ρ означает, что на графе данного
бинарного отношения вокруг каждой точки x из Χ есть петля. Если Χ = R ,
то рефлексивность бинарного отношения ρ с точки зрения декартовой
диаграммы означает, что в число изображенных точек войдут все точки
прямой y ( x) = x .
Бинарное отношение ρ на (4,2 ), .
(2,3), (2,4), (2,5) (5,1), (5,2)
б) 7/8 и 5/6 НОЗ(24) 21/24 и 20/24
в) 5/28 и 9/14 НОЗ(28) 5/28 и 18/28
г) 3/7 и 9/4 НОЗ(28) 12/28 и 63/28
д) 13/16 и 11/12 НОЗ(48) 39/48 и 44/48
е) 3/4, 4/21 и 5/6 НОЗ(84) 63/84, 16/84 и 70/84
2) а) 9/10 и 7/20 приводим к НОЗ(20) и получаем 18/20 > 7/20
б) 4/9 и 10/27 приводим к НОЗ(27) и получаем 12/27 > 10/27
в) 3/10 и 4/15 приводим к НОЗ(30) и получаем 9/30 > 8/30
г) 6/7 и 2/3 приводим к НОЗ(21)и получаем 18/21 > 14/21
д) 7/15 и 19/40 приводим К НОЗ(120) и получаем 56/120 < 57/120
е) 13/18 и 23/42 приводим к НОЗ(126) и получаем 91/126 > 69/126
3) Приведем все числа к НОЗ(60) и получим 45/60, 25/60, 16/60, 21/60 расположим их по возрастанию 16/60, 21/60, 25/60, 45/60 (они же в первоначальном виде 4/15, 7/20, 5/12, 3/4