Исходя из признаков делимости, мои умозаключения. Т.к. крокодиллл делится на 321, значит оно будет делится и на все делители числа 321, среди которых есть 8. Число делится на 8, когда три последние цифры составляют число, делящееся на 8. В нашем случае последние три цифры одинаковые. Существует две комбинации: либо 000, либо 888, которые можно поделить на 8. 000 исключаем по условию. Соответственно Л - это 8. У числа 392 тоже 8 является делителем. НО, горилла будет делиться на 8 только, если последние цифры будут 880, а это противоречит условиям. Следовательно, оно не может быть поделено на 392.
Исходя из признаков делимости, мои умозаключения. Т.к. крокодиллл делится на 321, значит оно будет делится и на все делители числа 321, среди которых есть 8. Число делится на 8, когда три последние цифры составляют число, делящееся на 8. В нашем случае последние три цифры одинаковые. Существует две комбинации: либо 000, либо 888, которые можно поделить на 8. 000 исключаем по условию. Соответственно Л - это 8. У числа 392 тоже 8 является делителем. НО, горилла будет делиться на 8 только, если последние цифры будут 880, а это противоречит условиям. Следовательно, оно не может быть поделено на 392.
8
Объяснение:
Складывая данные уравнения , получим : x² +y² = 4(x+y) ( 1 )
пусть x + y = a ⇒ y = a-x , подставим в ( 1 ) вместо y ( a -x ) :
x² +( a-x)² - 4a = 0 или : 2x² -2ax +a²-4a = 0 ( 2 )
уравнение (2) имеет решение , если D/4 ≥ 0 или :
a² -2(a² -4a) ≥ 0 ⇔ a² -8a ≤ 0 ⇔ 0 ≤ a ≤ 8 ⇒ наибольшее a , при
котором уравнение ( 2 ) имеет решение равно 8 ⇒ a ≤ 8 ;
проверкой убеждаемся , что пара ( 4 ; 4) является решением
системы и мы доказали , что x+y ≤ 8 ⇒ 8 - наибольшее
значение суммы (x+y)
x*z/(x+z)=xtz
tz*(x+3+t)=hx
hz*(x+6+z)=xzt
x+z=t*h
Пошаговое объяснение: